?? mineps.m
字號:
function [alpha]=mineps(MI,SG,alpha,dalpha,tmax,tdelta)
% MINEPS finds optimal alpha (Generalized Anderson's task).% [alpha]=mineps(MI,SG,alpha,dalpha,tmax,tdelta)
%
% MINEPS is an auxiliary function used in algorithms GANDERS
% and GANDERS2. For more details refer to book SH10.
%
% This function maximizes unimodal objective function which
% acts in algorithm solving Generalized Anderson's task.
%
% This function uses numeric optimization using Fibonacci
% sequence.
%
% See also MINEPSVL, MINEPSRT, GANDERS, GANDERS2, book SH10.
%
% Statistical Pattern Recognition Toolbox, Vojtech Franc, Vaclav Hlavac
% (c) Czech Technical University Prague, http://cmp.felk.cvut.cz
% Written Vojtech Franc (diploma thesis) 11.5.2000
% Modifications
% 24. 6.00 V. Hlavac, comments polished.
% global tmaxim;LO_TH=0;% default setting
if nargin < 5,
tmax = inf;
delta=1e-6;
elseif nargin < 6,
delta=0;
end
% get dimension N and the # of distributions
K = size(MI,2);
N = size(MI,1);
% compute constants
for j = 1:K,
s(j)= alpha'*MI(:,j);
ss(j) = dalpha'*MI(:,j);
ds(j) = ss(j) - s(j);
sga(j) = alpha'*SG(:,(j-1)*N+1:j*N)*alpha;
sgd(j) = dalpha'*SG(:,(j-1)*N+1:j*N)*dalpha;
sgad(j) = dalpha'*SG(:,(j-1)*N+1:j*N)*alpha;
end
% first step
F1=1;
F2=1;
tbeg=0;
tend=1;
tmid=0.5*(tend+tbeg);
fmid=max([LO_TH,min( (s+tmid*ds)./sqrt( (1-tmid)^2*sga + 2*tmid*(1-tmid)*sgad + tmid^2*sgd ) )]);fbeg=max([LO_TH,min( (s+tbeg*ds)./sqrt( (1-tbeg)^2*sga + 2*tbeg*(1-tbeg)*sgad + tbeg^2*sgd ) )]);if sqrt( (1-tend)^2*sga + 2*tend*(1-tend)*sgad + tend^2*sgd ) == 0, fend=0;else fend=max([LO_TH,min( (s+tend*ds)./sqrt( (1-tend)^2*sga + 2*tend*(1-tend)*sgad + tend^2*sgd ) )]);end
% start up
stop=0;
while stop==0 & tmax > 0,
tmax=tmax-1;
% store fmid
oldfmid=fmid;
% Fibonacci, F(k)=F(k-1)+F(k-2)
F=F2+F1;
% find larger interval
if (tmid-tbeg) < (tend-tmid),
% new bound
t=tmid+F1*(tend-tmid)/F;
fvalue=max([LO_TH,min( (s+t*ds)./sqrt( (1-t)^2*sga + 2*t*(1-t)*sgad + t^2*sgd ) )]);
if fvalue < fmid,
tend=t;
fend=fvalue;
else
tbeg=tmid;
fbeg=fmid;
tmid=t;
fmid=fvalue;
end
else
% new bound
t=tbeg+F1*(tmid-tbeg)/F;
fvalue=max([LO_TH,min( (s+t*ds)./sqrt( (1-t)^2*sga + 2*t*(1-t)*sgad + t^2*sgd ) )]);
if fvalue < fmid,
tbeg=t;
fbeg=fvalue;
else
tend=tmid;
fend=fmid;
tmid=t;
fmid=fvalue;
end
end
% update Fibonacci F(k-2)=F(k-1) and F(k-1)=F(k);
F2=F1;
F1=F;
% stop condition
if tend-tbeg < tdelta,
stop=1;
end
end
% get the bigest value
fvalues=[fbeg fmid fend];
tvalues=[tbeg tmid tend];
[fmax, imax]=max(fvalues);
tmaxim=tvalues(imax);
% compute new alpha
alpha=alpha*(1-tmaxim)+dalpha*tmaxim;
return
;
% debugging
if 1==1,
vals=[]; for t=0:0.01:1,
fvalue=min( (s+t*ds)./sqrt( (1-t)^2*sga + 2*t*(1-t)*sgad + t^2*sgd ) );
vals=[vals,fvalue]; end
figure; hold on; plot(0:0.01:1,vals,'g');
win=axis;
line([tmid tmid],[ win(3) win(4)],'Color','k');
line([0 1],[vals(1) vals(1)],'Color','r'); drawnow;
end
pause;return;
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -