亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? efinderproof.m

?? 找到了本征模式
?? M
字號:
function Efinder
tic

%Efinder: Finds the numerical values for eigen energies that satisfy the 
%Schroedinger equation for a single-well potential and then tests the result
%with the actual value.
%Note: hbar has been scaled to 1.

%To use: =>run

%__________________________________________________________________________

%In this example, Efinder will find the eigen energies that satisfy the 
%Schroedinger equation for the following potential, which is encountered when 
%dealing with trapping a fluxon in an Long Josephson Junction among other 
%places: 

%               potential=(-.2)*((sech(tt)).^2)

%Then it will calculate the exact value of En and compare this value with 
%the calculated value to illustrate the fact that Efinder's accuracy can 
%be adjusted to whatever accuracy is required by changing the variable
%'precision' appropriately. 

%The data will be saved to a file called Energy.txt in your workspace. The 
%data should be straightforward, but it will say nothing about which energy
%level is which (i.e. ground state,...), but it should be clear that lower
%eigen energy values correspond to the lower energy states.

%Furthermore, sometimes the energy levels are too close together for the 
%program to 'see' them, and therefore it does not collect data for those 
%particular energy levels and leaves a gap in the data. This is due to
%the energy step size, 'steps1', being larger than energy difference 
%between the energy levels. As long as you are careful about the range of 
%energies given to the program to search through, it should not be a 
%problem, though if you believe it has occurred, it can be corrected as
%described below in the commented section next to 'steps'.



%I make no claim that there is not a better way to find the eigen energies
%that satisfy the Schroedinger equation, but using this technique of taking 
%advantage of the wave solution behavior, which this program does, the energy 
%levels for 'nearly' any potential can be ascertained numerically (I say 
%'nearly' because I have not tried them all!). 

%I hope the explanation provided is adequate, but if there are any questions
%or suggestions feel free to contact me at <isaac.obryant@und.nodak.edu> or
%leave an evaluation on the MatLab website.

%Efinder was created by Isaac O'Bryant with help from Ramesh Dhungana. 
%Physics, University of North Dakota,(c) 7/29/2005



%Here begins the program Efinder___________________________________________

format long
global e
global pot
global m
global precision

         

           

m =  8;            %enter the 'mass' used in the Schroedinger equation

precision=6;      %will give data correct up to the sixth decimal place in
                  %this case. Change it accordingly.
                  

%energyrangefrom= ;  %enter the lower end of the energy range being considered here 
%energyrangeto=   ;  %enter the upper end of the energy range here
                    %(you must supply a finite range of energy values for
                    %the program to search through and that should also be
                    %appropriate for your specific situation) 

steps=     200      ;  %enter how many increments the above range should be 
                    %separated into (e.g. steps=300)
                    
                    %(Note: if the separation between energy levels is less
                    %than |energyrangefrom-energyrangeto|/(steps) this
                    %program will not find these energy levels; correct by
                    %breaking up original energy range into several smaller
                    %energy ranges and rerunnig this function again for each 
                    %smaller set of ranges, or by increasing the step size)
                    
                    
                    
%(optional)________________________________________________________________                  
%this will find the bottem of potential wells and use this value as part of
%the range this function will search through to find eigen energies. If you
%are dealing with such a situation in which this might be useful, uncomment
%the following remarks and comment or delete 'energyrangefrom' and 
%'energyrangeto' above and then add your potential in for pot1, making sure
%to use tt in place of t as you will need to do at the bottem of this file.

tt=-6:.01:6;
pot1=(-.2)*((sech(tt)).^2);    %(E.g 'pot1=(-.2)*((sech(tt)).^2)');
potbottem=min(pot1);           %of course here the minimum is -.2, but this
                               %way is more fun and it will work for other
                               %functions as well, though the range of tt
                               %may need to be adjusted accordingly


energyrangeto= 0;
energyrangefrom= potbottem;

%__________________________________________________________________________





%here are the initial conditons____________________________________________

tspan = [-40,40];    %tspan is used in ode45 and may need to be changed 
                     %depending on your potential  

options= odeset('RelTol', 1e-10,'AbsTol',[1e-10 1e-10]);
y0 = [0;1];
ee=[0;1];
n=1;
data=[0 0];



%Here is the while loop____________________________________________________


while (abs(ee(end-1)-ee(end))>(1*10^(-1-precision))) | ((ee(end-1)-ee(end))==0)
    E1=[energyrangefrom;data(:,1)]; %the first range it looks at is from
    E2=[energyrangeto;data(:,2)];   %energyrangefrom to energyrangeto, then
    previous=[];                    %it uses the values from the 'for' loop
    t=[];
    y=[];

    if n>1
        steps=20;   %after it finds some energy levels, it switches to this 
    end             %stepsize and defines the energy levels more accurately 
                    %each time it goes through the while loop      
                    %(the first iteration it looks through the whole  
                    %range and finds all the energy levels using the
                    %step size you inputted for steps)
    

    for e = linspace(E1(n),E2(n),steps)	
        [t,y] = ode45(@schrod,tspan,y0,options);
        y1=y(:,1);
        ee=[ee;e];
        result=y1(end);

        if isempty(previous)
            previous=[result];
        end

        previous=[previous;result];

        if (previous(end)>0) & (previous(end-1)<0)
            data=[data;ee(end-1),ee(end)];
        elseif (previous(end)<0) & (previous(end-1)>0)	
            data=[data;ee(end-1),ee(end)];
        end	
    end

    if n==1
        if length(data)>2 
            level1=(length(data)-1);
            level2=1;
        elseif length(data)==2 
            level1=0;
            level2=0;
        else        %this might not be working, I'm not sure...
            disp('No energy levels found in this range')
            fprintf(1,' E1=%10.9f  E2=%10.9f\n',E1(n),E2(n));
            break
        end
    end
    n=n+1;

    if n>40      %just in case...
        break
    end
end
datal=[data((end-level1):(end-level2),1)];

%__________________________________________________________________________
%This part calculates the exact value for the eigen energies in this
%example, as the resulting differential equation yields an exact formulaic
%expression for En. This value is then compared with the value calculated
%by the program Efinder to illustrate the fact that Efinder's accuracy can 
%be adjusted to whatever accuracy is required by changing the variable
%'precision' appropriately.

actual=[];
ep=.1;
nn=0;
while ((1+(16*ep*8))^(1/2))>(1+2*nn)
    nn;
    e=-(1/64)*(((1+(16*ep*8))^(1/2))-(1+2*nn))^2;
    actual=[actual; e];
    nn=nn+1; 
end

%__________________________________________________________________________

a=abs(actual-datal);


fprintf(1,'This data is only reliable up until the %1.0fth decimal place, \n',precision);
fprintf(1,'as you specified. The following %1.0f energy levels were found:  \n', length(datal));
fprintf(1,'   \n');
fprintf(1,'   %11.10f  \n',datal);
fprintf(1,'   \n');
fprintf(1,'This next set of data are the exact eigen energies for this \n');
fprintf(1,'potential to be compared with the data immediately above:\n');
fprintf(1,'   \n');
fprintf(1,'   %11.10f  \n',actual);
fprintf(1,'   \n');
fprintf(1,'This next set of data are the difference between the calculated \n');
fprintf(1,'and the actual\n');
fprintf(1,'   \n');
fprintf(1,'   %11.10f  \n',a);
fprintf(1,'   \n');


fid=fopen('Energy.txt', 'a');     %Saves data from the program to Energy.txt 
fprintf(fid,'This data is only reliable up until the %1.0fth decimal place, \n',precision);
fprintf(fid,'as you specified. The following %1.0f energy levels were found  \n', length(datal));
fprintf(fid,'by the program Efinder: \n');
fprintf(fid,'   \n');
fprintf(fid,'   %11.10f  \n',datal);
fprintf(fid,'   \n');
fclose(fid);
toc


%__________________________________________________________________________

function ydot = schrod(t,y)
%The function schrod stores the Schroedinger equation. Note: hbar has been 
%scaled to 1. Enter the potential below like: 

            %ydot = [y(2);-2*m*(e + (-your potential))*y(1)];

%(e.g. if: potential= -a*((sech(t-l))^2+(sech(t+l))^2)
%then: ydot = [y(2);-2*m*(e +.a*((sech(t-l))^2+(sech(t+l))^2))*y(1)]; )

format long
global e
global pot
global m


ydot = [y(2);-2*m*(e + (.2)*((sech(t))^2))*y(1)];

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
一区二区久久久| 久久久噜噜噜久噜久久综合| 亚洲视频香蕉人妖| 成人av集中营| 中文字幕一区二区在线播放| 99久久精品一区| 亚洲欧美另类图片小说| 欧美色成人综合| 日本伊人色综合网| 久久色视频免费观看| 国v精品久久久网| 日韩美女视频19| 欧美日韩aaaaaa| 麻豆国产精品一区二区三区 | 91免费国产在线观看| 亚洲激情中文1区| 欧美日韩精品欧美日韩精品| 麻豆一区二区99久久久久| 久久综合狠狠综合| 91麻豆精品一区二区三区| 天天操天天色综合| 久久久不卡网国产精品二区| 91一区一区三区| 日本最新不卡在线| 国产精品日韩成人| 欧美乱熟臀69xxxxxx| 国产精品系列在线观看| 亚洲欧美日韩一区二区 | 日本午夜精品视频在线观看| 久久综合久久综合亚洲| 91免费视频大全| 日本视频一区二区| 国产精品国产三级国产有无不卡 | 欧美美女喷水视频| 国产做a爰片久久毛片 | 亚洲国产视频直播| 国产欧美精品日韩区二区麻豆天美| av一二三不卡影片| 麻豆91小视频| 亚洲另类春色国产| 久久免费看少妇高潮| 在线观看视频一区二区欧美日韩| 久久se精品一区二区| 亚洲欧洲综合另类| 久久精品亚洲精品国产欧美| 欧美日产在线观看| 99精品在线免费| 国模冰冰炮一区二区| 日韩和欧美一区二区| 亚洲天堂精品在线观看| 精品播放一区二区| 欧美日韩国产三级| 色爱区综合激月婷婷| 东方aⅴ免费观看久久av| 日本va欧美va精品| 亚洲电影你懂得| 一区在线中文字幕| 欧美激情一区三区| 亚洲精品在线免费观看视频| 欧美午夜影院一区| 日本韩国欧美一区二区三区| 国产高清久久久| 美女一区二区三区在线观看| 亚洲国产乱码最新视频| 亚洲欧洲综合另类| 亚洲色图视频网| 欧美激情一区三区| 日本一区二区三区在线不卡 | 久久久国产一区二区三区四区小说| 欧美日韩不卡视频| 欧美人体做爰大胆视频| 欧美综合一区二区| 91电影在线观看| 一本大道综合伊人精品热热| 成人av中文字幕| 成人av在线网站| 国产成人在线网站| 成人app网站| 成人精品视频一区| av在线播放不卡| 91丨九色丨尤物| 色婷婷久久久久swag精品| 成人精品在线视频观看| eeuss鲁片一区二区三区在线观看| 国产**成人网毛片九色| jlzzjlzz亚洲女人18| 色综合视频一区二区三区高清| 成人aa视频在线观看| 色综合色综合色综合色综合色综合| 色综合久久久久久久| 欧美在线观看视频一区二区三区| 91麻豆国产精品久久| 在线观看www91| 欧美高清视频一二三区| 日韩欧美国产成人一区二区| 精品国产一区二区三区不卡| 国产欧美一区二区三区网站| 欧美极品另类videosde| 亚洲少妇30p| 亚洲五码中文字幕| 久久成人av少妇免费| 风流少妇一区二区| 色婷婷精品大视频在线蜜桃视频| 91久久精品日日躁夜夜躁欧美| 欧美美女视频在线观看| 精品国产自在久精品国产| 中文字幕精品在线不卡| 亚洲一二三四久久| 蜜桃视频在线一区| 成人免费三级在线| 欧美性生活大片视频| 精品国产免费视频| 亚洲美女淫视频| 男女性色大片免费观看一区二区| 国精产品一区一区三区mba桃花 | 艳妇臀荡乳欲伦亚洲一区| 首页欧美精品中文字幕| 国产**成人网毛片九色| 欧美视频中文字幕| 国产婷婷色一区二区三区在线| 亚洲裸体在线观看| 韩国v欧美v日本v亚洲v| 一本大道av一区二区在线播放 | 精品欧美乱码久久久久久| 国产精品国产三级国产专播品爱网 | 91精品国产综合久久久久久| 久久婷婷久久一区二区三区| 亚洲精品中文字幕在线观看| 九九精品一区二区| 色94色欧美sute亚洲线路一久| 日韩欧美第一区| 亚洲品质自拍视频| 国产精品99久| 91精品国产色综合久久久蜜香臀| 欧美激情一区二区三区全黄 | 一区二区三区高清在线| 精品一区二区日韩| 欧美亚洲综合色| 国产精品国产精品国产专区不蜜| 日韩avvvv在线播放| 99久久精品免费精品国产| 欧美va亚洲va香蕉在线| 亚洲成人在线免费| 色琪琪一区二区三区亚洲区| 久久久久久久久久久久久女国产乱| 午夜精品影院在线观看| 99精品视频在线免费观看| 久久久夜色精品亚洲| 男人的j进女人的j一区| 欧美日韩一区二区在线视频| 中文字幕一区二区三中文字幕| 国内精品久久久久影院色| 日韩一区二区免费高清| 香蕉久久夜色精品国产使用方法| 成人午夜电影久久影院| 久久日一线二线三线suv| 全国精品久久少妇| 欧美日韩成人在线一区| 亚洲成人自拍一区| 91官网在线观看| 亚洲欧美激情在线| 色哟哟国产精品免费观看| 中文字幕在线不卡国产视频| 国产一区二区0| 亚洲精品一区二区在线观看| 免费观看日韩av| 欧美一区二区人人喊爽| 亚洲成人激情自拍| 这里只有精品99re| 日本中文在线一区| 日韩一区二区精品葵司在线| 奇米综合一区二区三区精品视频| 欧美片在线播放| 琪琪一区二区三区| 337p日本欧洲亚洲大胆色噜噜| 激情av综合网| 久久影视一区二区| 懂色一区二区三区免费观看| 亚洲国产精品精华液2区45| 成人一区二区三区视频| 中文字幕一区不卡| 91丨九色丨国产丨porny| 亚洲精品国产a| 欧美日韩一区不卡| 麻豆精品视频在线观看| 国产性天天综合网| 白白色亚洲国产精品| 亚洲欧美偷拍三级| 欧美日韩久久一区| 久久精品99国产精品日本| 精品动漫一区二区三区在线观看| 国产精品91一区二区| 亚洲天堂久久久久久久| 欧美日韩一区二区三区四区| 麻豆精品视频在线| 国产精品国产三级国产aⅴ原创| 色爱区综合激月婷婷| 久久精品国产精品亚洲综合| 久久精品人人做人人爽人人| 97久久精品人人爽人人爽蜜臀|