?? zeror.java
字號:
/**
*
* AgentAcademy - an open source Data Mining framework for
* training intelligent agents
*
* Copyright (C) 2001-2003 AA Consortium.
*
* This library is open source software; you can redistribute it
* and/or modify it under the terms of the GNU Lesser General
* Public License as published by the Free Software Foundation;
* either version 2.0 of the License, or (at your option) any later
* version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free
* Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*
*/
package org.agentacademy.modules.dataminer.classifiers;
import java.util.Enumeration;
import org.agentacademy.modules.dataminer.classifiers.evaluation.DistributionClassifier;
import org.agentacademy.modules.dataminer.classifiers.evaluation.Evaluation;
import org.agentacademy.modules.dataminer.core.Attribute;
import org.agentacademy.modules.dataminer.core.Instance;
import org.agentacademy.modules.dataminer.core.Instances;
import org.agentacademy.modules.dataminer.core.Utils;
import org.agentacademy.modules.dataminer.core.WeightedInstancesHandler;
import org.apache.log4j.Logger;
/**
* Class for building and using a 0-R classifier. Predicts the mean
* (for a numeric class) or the mode (for a nominal class).
*
* @author Eibe Frank (eibe@cs.waikato.ac.nz)
* @version $Revision: 1.3 $
*/
public class ZeroR extends DistributionClassifier
implements WeightedInstancesHandler {
public static Logger log = Logger.getLogger(ZeroR.class);
/** The class value 0R predicts. */
private double m_ClassValue;
/** The number of instances in each class (null if class numeric). */
private double [] m_Counts;
/** The class attribute. */
private Attribute m_Class;
/**
* Generates the classifier.
*
* @param instances set of instances serving as training data
* @exception Exception if the classifier has not been generated successfully
*/
public void buildClassifier(Instances instances) throws Exception {
m_Class = instances.classAttribute();
m_ClassValue = 0;
switch (instances.classAttribute().type()) {
case Attribute.NUMERIC:
m_Counts = null;
break;
case Attribute.NOMINAL:
m_Counts = new double [instances.numClasses()];
for (int i = 0; i < m_Counts.length; i++) {
m_Counts[i] = 1;
}
break;
default:
throw new Exception("ZeroR can only handle nominal and numeric class"
+ " attributes.");
}
Enumeration enum = instances.enumerateInstances();
while (enum.hasMoreElements()) {
Instance instance = (Instance) enum.nextElement();
if (!instance.classIsMissing()) {
if (instances.classAttribute().isNominal()) {
m_Counts[(int)instance.classValue()] += instance.weight();
} else {
m_ClassValue += instance.weight() * instance.classValue();
}
}
}
if (instances.classAttribute().isNumeric()) {
if (Utils.gr(instances.sumOfWeights(), 0)) {
m_ClassValue /= instances.sumOfWeights();
}
} else {
m_ClassValue = Utils.maxIndex(m_Counts);
Utils.normalize(m_Counts);
}
}
/**
* Classifies a given instance.
*
* @param instance the instance to be classified
* @return index of the predicted class
*/
public double classifyInstance(Instance instance) {
return m_ClassValue;
}
/**
* Calculates the class membership probabilities for the given test instance.
*
* @param instance the instance to be classified
* @return predicted class probability distribution
* @exception Exception if class is numeric
*/
public double [] distributionForInstance(Instance instance)
throws Exception {
if (m_Counts == null) {
double[] result = new double[1];
result[0] = m_ClassValue;
return result;
} else {
return (double []) m_Counts.clone();
}
}
/**
* Returns a description of the classifier.
*
* @return a description of the classifier as a string.
*/
public String toString() {
if (m_Class == null) {
return "ZeroR: No model built yet.";
}
if (m_Counts == null) {
return "ZeroR predicts class value: " + m_ClassValue;
} else {
return "ZeroR predicts class value: " + m_Class.value((int) m_ClassValue);
}
}
/**
* Main method for testing this class.
*
* @param argv the options
*/
public static void main(String [] argv) {
try {
System.out.println(Evaluation.evaluateModel(new ZeroR(), argv));
} catch (Exception e) {
log.error(e.getMessage());
}
}
}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -