亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? principalcomponents.java

?? 一個(gè)數(shù)據(jù)挖掘系統(tǒng)的源碼
?? JAVA
?? 第 1 頁(yè) / 共 2 頁(yè)
字號(hào):

/**
 *
 *   AgentAcademy - an open source Data Mining framework for
 *   training intelligent agents
 *
 *   Copyright (C)   2001-2003 AA Consortium.
 *
 *   This library is open source software; you can redistribute it
 *   and/or modify it under the terms of the GNU Lesser General
 *   Public License as published by the Free Software Foundation;
 *   either version 2.0 of the License, or (at your option) any later
 *   version.
 *
 *   This library is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU Lesser General Public
 *   License along with this library; if not, write to the Free
 *   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 *   MA  02111-1307 USA
 *
 */

package org.agentacademy.modules.dataminer.attributeSelection;

import java.util.Enumeration;
import java.util.Vector;

import org.agentacademy.modules.dataminer.core.Attribute;
import org.agentacademy.modules.dataminer.core.FastVector;
import org.agentacademy.modules.dataminer.core.Instance;
import org.agentacademy.modules.dataminer.core.Instances;
import org.agentacademy.modules.dataminer.core.Matrix;
import org.agentacademy.modules.dataminer.core.Option;
import org.agentacademy.modules.dataminer.core.OptionHandler;
import org.agentacademy.modules.dataminer.core.SparseInstance;
import org.agentacademy.modules.dataminer.core.Utils;
import org.agentacademy.modules.dataminer.filters.AttributeFilter;
import org.agentacademy.modules.dataminer.filters.Filter;
import org.agentacademy.modules.dataminer.filters.NominalToBinaryFilter;
import org.agentacademy.modules.dataminer.filters.NormalizationFilter;
import org.agentacademy.modules.dataminer.filters.ReplaceMissingValuesFilter;

import org.apache.log4j.Logger;

/**
 * Class for performing principal components analysis/transformation.
 *
 * @author Mark Hall (mhall@cs.waikato.ac.nz)
 * @author Gabi Schmidberger (gabi@cs.waikato.ac.nz)
 * @version $Revision: 1.3 $
 */
public class PrincipalComponents extends AttributeEvaluator
  implements AttributeTransformer, OptionHandler {

 public static Logger                log = Logger.getLogger(PrincipalComponents.class);
  /** The data to transform analyse/transform */
  private Instances m_trainInstances;

  /** Keep a copy for the class attribute (if set) */
  private Instances m_trainCopy;

  /** The header for the transformed data format */
  private Instances m_transformedFormat;

  /** The header for data transformed back to the original space */
  private Instances m_originalSpaceFormat;

  /** Data has a class set */
  private boolean m_hasClass;

  /** Class index */
  private int m_classIndex;

  /** Number of attributes */
  private int m_numAttribs;

  /** Number of instances */
  private int m_numInstances;

  /** Correlation matrix for the original data */
  private double [][] m_correlation;

  /** Will hold the unordered linear transformations of the (normalized)
      original data */
  private double [][] m_eigenvectors;

  /** Eigenvalues for the corresponding eigenvectors */
  private double [] m_eigenvalues = null;

  /** Sorted eigenvalues */
  private int [] m_sortedEigens;

  /** sum of the eigenvalues */
  private double m_sumOfEigenValues = 0.0;

  /** Filters for original data */
  private ReplaceMissingValuesFilter m_replaceMissingFilter;
  private NormalizationFilter m_normalizeFilter;
  private NominalToBinaryFilter m_nominalToBinFilter;
  private AttributeFilter m_attributeFilter;

  /** used to remove the class column if a class column is set */
  private AttributeFilter m_attribFilter;

  /** The number of attributes in the pc transformed data */
  private int m_outputNumAtts = -1;

  /** normalize the input data? */
  private boolean m_normalize = true;

  /** the amount of varaince to cover in the original data when
      retaining the best n PC's */
  private double m_coverVariance = 0.95;

  /** transform the data through the pc space and back to the original
      space ? */
  private boolean m_transBackToOriginal = false;

  /** holds the transposed eigenvectors for converting back to the
      original space */
  private double [][] m_eTranspose;

  /**
   * Returns a string describing this attribute transformer
   * @return a description of the evaluator suitable for
   * displaying in the explorer/experimenter gui
   */
  public String globalInfo() {
    return "Performs a principal components analysis and transformation of "
      +"the data. Use in conjunction with a Ranker search. Dimensionality "
      +"reduction is accomplished by choosing enough eigenvectors to "
      +"account for some percentage of the variance in the original data---"
      +"default 0.95 (95%). Attribute noise can be filtered by transforming "
      +"to the PC space, eliminating some of the worst eigenvectors, and "
      +"then transforming back to the original space.";
  }

  /**
   * Returns an enumeration describing the available options. <p>
   *
   * -N <classifier>
   * Don't normalize the input data. <p>
   *
   * @return an enumeration of all the available options.
   **/
  public Enumeration listOptions () {
    Vector newVector = new Vector(3);
    newVector.addElement(new Option("\tDon't normalize input data."
				    , "D", 0, "-D"));

    newVector.addElement(new Option("\tRetain enough PC attributes to account "
				    +"\n\tfor this proportion of variance in "
				    +"the original data. (default = 0.95)",
				    "R",1,"-R"));

    newVector.addElement(new Option("\tTransform through the PC space and "
				    +"\n\tback to the original space."
				    , "O", 0, "-O"));
    return  newVector.elements();
  }

  /**
   * Parses a given list of options.
   *
   * Valid options are:<p>
   * -N <classifier>
   * Don't normalize the input data. <p>
   *
   * @param options the list of options as an array of strings
   * @exception Exception if an option is not supported
   */
  public void setOptions (String[] options)
    throws Exception
  {
    resetOptions();
    String optionString;

    optionString = Utils.getOption('R', options);
    if (optionString.length() != 0) {
      Double temp;
      temp = Double.valueOf(optionString);
      setVarianceCovered(temp.doubleValue());
    }
    setNormalize(!Utils.getFlag('D', options));

    setTransformBackToOriginal(Utils.getFlag('O', options));
  }

  /**
   * Reset to defaults
   */
  private void resetOptions() {
    m_coverVariance = 0.95;
    m_normalize = true;
    m_sumOfEigenValues = 0.0;
    m_transBackToOriginal = false;
  }

  /**
   * Returns the tip text for this property
   * @return tip text for this property suitable for
   * displaying in the explorer/experimenter gui
   */
  public String normalizeTipText() {
    return "Normalize input data.";
  }

  /**
   * Set whether input data will be normalized.
   * @param n true if input data is to be normalized
   */
  public void setNormalize(boolean n) {
    m_normalize = n;
  }

  /**
   * Gets whether or not input data is to be normalized
   * @return true if input data is to be normalized
   */
  public boolean getNormalize() {
    return m_normalize;
  }

  /**
   * Returns the tip text for this property
   * @return tip text for this property suitable for
   * displaying in the explorer/experimenter gui
   */
  public String varianceCoveredTipText() {
    return "Retain enough PC attributes to account for this proportion of "
      +"variance.";
  }

  /**
   * Sets the amount of variance to account for when retaining
   * principal components
   * @param vc the proportion of total variance to account for
   */
  public void setVarianceCovered(double vc) {
    m_coverVariance = vc;
  }

  /**
   * Gets the proportion of total variance to account for when
   * retaining principal components
   * @return the proportion of variance to account for
   */
  public double getVarianceCovered() {
    return m_coverVariance;
  }

  /**
   * Returns the tip text for this property
   * @return tip text for this property suitable for
   * displaying in the explorer/experimenter gui
   */
  public String transformBackToOriginalTipText() {
    return "Transform through the PC space and back to the original space. "
      +"If only the best n PCs are retained (by setting varianceCovered < 1) "
      +"then this option will give a dataset in the original space but with "
      +"less attribute noise.";
  }

  /**
   * Sets whether the data should be transformed back to the original
   * space
   * @param b true if the data should be transformed back to the
   * original space
   */
  public void setTransformBackToOriginal(boolean b) {
    m_transBackToOriginal = b;
  }

  /**
   * Gets whether the data is to be transformed back to the original
   * space.
   * @return true if the data is to be transformed back to the original space
   */
  public boolean getTransformBackToOriginal() {
    return m_transBackToOriginal;
  }

  /**
   * Gets the current settings of PrincipalComponents
   *
   * @return an array of strings suitable for passing to setOptions()
   */
  public String[] getOptions () {

    String[] options = new String[4];
    int current = 0;

    if (!getNormalize()) {
      options[current++] = "-D";
    }

    options[current++] = "-R"; options[current++] = ""+getVarianceCovered();

    if (getTransformBackToOriginal()) {
      options[current++] = "-O";
    }

    while (current < options.length) {
      options[current++] = "";
    }

    return  options;
  }

  /**
   * Initializes principal components and performs the analysis
   * @param data the instances to analyse/transform
   * @exception Exception if analysis fails
   */
  public void buildEvaluator(Instances data) throws Exception {
    buildAttributeConstructor(data);
  }

  private void buildAttributeConstructor (Instances data) throws Exception {
    m_eigenvalues = null;
    m_outputNumAtts = -1;
    m_attributeFilter = null;
    m_nominalToBinFilter = null;
    m_sumOfEigenValues = 0.0;

    if (data.checkForStringAttributes()) {
      throw  new Exception("Can't handle string attributes!");
    }
    m_trainInstances = data;

    // make a copy of the training data so that we can get the class
    // column to append to the transformed data (if necessary)
    m_trainCopy = new Instances(m_trainInstances);

    m_replaceMissingFilter = new ReplaceMissingValuesFilter();
    m_replaceMissingFilter.setInputFormat(m_trainInstances);
    m_trainInstances = Filter.useFilter(m_trainInstances,
					m_replaceMissingFilter);

    if (m_normalize) {
      m_normalizeFilter = new NormalizationFilter();
      m_normalizeFilter.setInputFormat(m_trainInstances);
      m_trainInstances = Filter.useFilter(m_trainInstances, m_normalizeFilter);
    }

    m_nominalToBinFilter = new NominalToBinaryFilter();
    m_nominalToBinFilter.setInputFormat(m_trainInstances);
    m_trainInstances = Filter.useFilter(m_trainInstances,
					m_nominalToBinFilter);

    // delete any attributes with only one distinct value or are all missing
    Vector deleteCols = new Vector();
    for (int i=0;i<m_trainInstances.numAttributes();i++) {
      if (m_trainInstances.numDistinctValues(i) <=1) {
	deleteCols.addElement(new Integer(i));
      }
    }

    if (m_trainInstances.classIndex() >=0) {
      // get rid of the class column
      m_hasClass = true;
      m_classIndex = m_trainInstances.classIndex();
      deleteCols.addElement(new Integer(m_classIndex));
    }

    // remove columns from the data if necessary
    if (deleteCols.size() > 0) {
      m_attributeFilter = new AttributeFilter();
      int [] todelete = new int [deleteCols.size()];
      for (int i=0;i<deleteCols.size();i++) {
	todelete[i] = ((Integer)(deleteCols.elementAt(i))).intValue();
      }
      m_attributeFilter.setAttributeIndicesArray(todelete);
      m_attributeFilter.setInvertSelection(false);
      m_attributeFilter.setInputFormat(m_trainInstances);
      m_trainInstances = Filter.useFilter(m_trainInstances, m_attributeFilter);
    }

    m_numInstances = m_trainInstances.numInstances();
    m_numAttribs = m_trainInstances.numAttributes();

    fillCorrelation();

    double [] d = new double[m_numAttribs];
    double [][] v = new double[m_numAttribs][m_numAttribs];


    Matrix corr = new Matrix(m_correlation);
    corr.eigenvalueDecomposition(v, d);
    //if (debug) {
    //  Matrix V = new Matrix(v);
    //  boolean b = corr.testEigen(V, d, true);
    //  if (!b)
    //	System.out.println("Problem with eigenvektors!!!");
    //  else
    //	System.out.println("***** everything's fine !!!");
    //  }

    m_eigenvectors = (double [][])v.clone();
    m_eigenvalues = (double [])d.clone();

    // any eigenvalues less than 0 are not worth anything --- change to 0
    for (int i = 0; i < m_eigenvalues.length; i++) {
      if (m_eigenvalues[i] < 0) {
	m_eigenvalues[i] = 0.0;
      }
    }
    m_sortedEigens = Utils.sort(m_eigenvalues);
    m_sumOfEigenValues = Utils.sum(m_eigenvalues);

    m_transformedFormat = setOutputFormat();
    if (m_transBackToOriginal) {
      m_originalSpaceFormat = setOutputFormatOriginal();

      // new ordered eigenvector matrix
      int numVectors = (m_transformedFormat.classIndex() < 0)
	? m_transformedFormat.numAttributes()

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产精品第13页| 欧美亚洲高清一区二区三区不卡| 国产精品一区二区在线观看不卡| 欧美人与z0zoxxxx视频| 亚洲精品视频一区| 成人午夜免费av| 久久综合资源网| 亚洲sss视频在线视频| 91免费在线视频观看| 国产精品久久久久影院老司| 欧美精品在线观看播放| 午夜电影一区二区三区| 日韩精品中文字幕一区二区三区| 亚洲成人综合视频| 国产午夜精品久久| av资源网一区| 亚洲欧美怡红院| 91久久久免费一区二区| 久久99久久99| 日韩欧美亚洲国产另类| 91久久一区二区| 国产成人精品午夜视频免费| 国产精品久久久久久久久快鸭| 欧美丰满嫩嫩电影| 色呦呦网站一区| 青青青爽久久午夜综合久久午夜 | 五月激情六月综合| 国产精品毛片a∨一区二区三区| 成人av片在线观看| 亚洲综合色婷婷| 欧美一级午夜免费电影| 国产做a爰片久久毛片| 国产精品素人视频| 国产亚洲精品福利| 精品盗摄一区二区三区| 99r国产精品| 图片区日韩欧美亚洲| 一区二区三区在线视频播放| 3d动漫精品啪啪1区2区免费| 国内精品不卡在线| 狠狠网亚洲精品| 看片的网站亚洲| 国产精品国产三级国产a| 久久精品在线观看| 国产亚洲成av人在线观看导航| 精品国产乱码久久久久久影片| 日韩一区二区三区电影 | 欧美韩日一区二区三区四区| av成人老司机| 色综合久久中文综合久久97| 97久久久精品综合88久久| 成人精品一区二区三区四区| 国产女人18水真多18精品一级做| 久久精品国产亚洲5555| 欧洲精品一区二区| 亚洲码国产岛国毛片在线| 欧美一区二区三区日韩视频| 制服丝袜亚洲网站| 欧美一区二区精品在线| 欧美电视剧免费全集观看| 精品理论电影在线观看| 91一区二区在线观看| 91网站在线播放| 在线观看国产精品网站| 在线电影一区二区三区| 精品日韩欧美一区二区| 欧美激情中文字幕| 亚洲视频在线一区观看| 亚洲精品一区二区三区福利 | 国产suv精品一区二区883| 一级特黄大欧美久久久| 午夜日韩在线电影| 久久99国内精品| 国内不卡的二区三区中文字幕| 欧美一区二区视频在线观看| 日韩中文字幕区一区有砖一区 | 亚洲1区2区3区4区| 三级精品在线观看| 韩国av一区二区三区四区| 国产成人精品一区二区三区四区 | 欧美r级电影在线观看| 久久久国产午夜精品| 91精品国产色综合久久久蜜香臀| 日韩精品一区二区三区四区视频| 欧美—级在线免费片| 亚洲一区二区三区不卡国产欧美| 蜜桃视频在线一区| 天天综合网天天综合色| 国产中文一区二区三区| 色综合色狠狠天天综合色| 91精品啪在线观看国产60岁| 国产人成亚洲第一网站在线播放 | 天天色图综合网| 国产精品亚洲视频| 欧美四级电影在线观看| 久久精品一二三| 国内精品久久久久影院色| 久久九九99视频| 欧美一级二级三级蜜桃| 日本一二三不卡| 亚洲一区二区不卡免费| 狠狠狠色丁香婷婷综合激情| 色域天天综合网| 久久久久久久综合色一本| 亚洲一区av在线| 国产东北露脸精品视频| 337p亚洲精品色噜噜噜| 亚洲欧美影音先锋| 国产一区二区三区日韩| 日本人妖一区二区| 精品一区二区三区欧美| 在线观看亚洲精品视频| 中文av一区二区| 韩国v欧美v日本v亚洲v| 欧美日韩国产成人在线免费| 国产精品久久久久影院亚瑟| 国产真实乱子伦精品视频| 欧美一区二区视频在线观看2022| 亚洲欧美日韩国产综合| 成人深夜在线观看| 久久久噜噜噜久噜久久综合| 欧美a级理论片| 欧美乱熟臀69xxxxxx| 一区二区三区欧美激情| 99re热视频精品| 国产精品女人毛片| 丰满白嫩尤物一区二区| 久久久国产精品午夜一区ai换脸| 久久黄色级2电影| 91精品综合久久久久久| 亚洲午夜私人影院| 国产在线视频一区二区| 538prom精品视频线放| 亚洲国产精品久久一线不卡| 一本色道久久综合狠狠躁的推荐 | 免费看欧美女人艹b| 欧美在线你懂的| 亚洲一二三四在线| 欧美系列在线观看| 亚洲一区二区三区四区五区中文| 色婷婷综合久久| 亚洲免费高清视频在线| 91亚洲精品乱码久久久久久蜜桃| 国产精品日韩成人| 97国产一区二区| 亚洲免费观看在线视频| 在线视频国内一区二区| 一区二区三区.www| 欧美午夜一区二区| 天堂av在线一区| 日韩无一区二区| 国产一区二区精品在线观看| 久久久久88色偷偷免费| 国产成人丝袜美腿| 中文字幕国产精品一区二区| 成人18精品视频| 亚洲天堂精品在线观看| 在线观看亚洲一区| 亚洲成年人影院| 日韩女优电影在线观看| 国产精品一区免费视频| 成人免费小视频| 欧美视频在线播放| 日本在线播放一区二区三区| 欧美精品一区二区三区高清aⅴ| 狠狠色综合日日| 中文字幕欧美一| 欧美三级午夜理伦三级中视频| 久久久不卡影院| 99精品国产热久久91蜜凸| 亚洲一区日韩精品中文字幕| 日韩一区二区视频| 国产成人精品一区二| 一区二区日韩av| 欧美一区二区二区| 成人性视频网站| 一区二区三区四区在线| 国产不卡在线视频| 夜夜爽夜夜爽精品视频| 日韩欧美在线网站| 成人美女视频在线观看| 亚洲第一激情av| 日本一不卡视频| 欧美国产1区2区| 欧美日韩精品电影| 国产成人精品影视| 天天做天天摸天天爽国产一区| 国产欧美精品区一区二区三区| 色婷婷综合中文久久一本| 免费的成人av| 亚洲日本在线观看| 精品少妇一区二区三区在线视频| 波多野结衣在线一区| 天天亚洲美女在线视频| 中文字幕在线观看一区二区| 欧美一级片在线看| 一道本成人在线| 国产精品综合在线视频| 亚洲成人av电影在线| 国产精品成人一区二区艾草|