亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? kmeans.java

?? 一個數據挖掘系統的源碼
?? JAVA
?? 第 1 頁 / 共 2 頁
字號:

/**
 *
 *   AgentAcademy - an open source Data Mining framework for
 *   training intelligent agents
 *
 *   Copyright (C)   2001-2003 AA Consortium.
 *
 *   This library is open source software; you can redistribute it
 *   and/or modify it under the terms of the GNU Lesser General
 *   Public License as published by the Free Software Foundation;
 *   either version 2.0 of the License, or (at your option) any later
 *   version.
 *
 *   This library is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU Lesser General Public
 *   License along with this library; if not, write to the Free
 *   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 *   MA  02111-1307 USA
 *
 */

package org.agentacademy.modules.dataminer.clusterers;

/**
 * <p>Title: The Data Miner prototype</p>
 * <p>Description: A prototype for the DataMiner (DM), the Agent Academy (AA) module responsible for performing data mining on the contents of the Agent Use Repository (AUR). The extracted knowledge is to be sent back to the AUR in the form of a PMML document.</p>
 * <p>Copyright: Copyright (c) 2002</p>
 * <p>Company: CERTH</p>
 * @author asymeon
 * @version 0.3
 */

import java.io.*;
import java.util.*;
import org.agentacademy.modules.dataminer.core.*;
import org.agentacademy.modules.dataminer.filters.Filter;
import org.agentacademy.modules.dataminer.filters.ReplaceMissingValuesFilter;
import org.jdom.*;
import org.jdom.output.*;
import org.apache.log4j.Logger;

/**
 * Simple k means clustering class.
 *
 * Valid options are:<p>
 *
 * -N <number of clusters> <br>
 * Specify the number of clusters to generate. <p>
 *
 * -S <seed> <br>
 * Specify random number seed. <p>
 *
 */
public class KMeans extends Clusterer implements OptionHandler {

 public static Logger                log = Logger.getLogger(KMeans.class);
   /** The pmmlDocument Document */
  public static Document pmmlDocument = null;

  /*
   * training instances
   */
  private Instances m_instances;

  /**
   * replace missing values in training instances
   */
  private ReplaceMissingValuesFilter m_ReplaceMissingFilter;

  /**
   * number of clusters to generate
   */
  private int m_NumClusters = 2;

  /**
   * holds the cluster centroids
   */
  private Instances m_ClusterCentroids;

  /**
   * temporary variable holding cluster assignments while iterating
   */
  private int [] m_ClusterAssignments;

  /**
   * random seed
   */
  private int m_Seed = 10;

  /**
   * attribute min values
   */
  private double [] m_Min;

  /**
   * attribute max values
   */
  private double [] m_Max;

  /**
   * Keep track of the number of iterations completed before convergence
   */
  private int m_Iterations = 0;

  /**
   * Returns a string describing this clusterer
   * @return a description of the evaluator suitable for
   * displaying in the explorer/experimenter gui
   */
  public String globalInfo() {
    return "Cluster data using the k means algorithm";
  }

  /**
   * Generates a clusterer. Has to initialize all fields of the clusterer
   * that are not being set via options.
   *
   * @param data set of instances serving as training data
   * @exception Exception if the clusterer has not been
   * generated successfully
   */
  public void buildClusterer(Instances data) throws Exception {
    m_Iterations = 0;
    if (data.checkForStringAttributes()) {
      throw  new Exception("Can't handle string attributes!");
    }

    m_ReplaceMissingFilter = new ReplaceMissingValuesFilter();
    m_ReplaceMissingFilter.setInputFormat(data);
    m_instances = Filter.useFilter(data, m_ReplaceMissingFilter);

    m_Min = new double [m_instances.numAttributes()];
    m_Max = new double [m_instances.numAttributes()];
    for (int i = 0; i < m_instances.numAttributes(); i++) {
      m_Min[i] = m_Max[i] = Double.NaN;
    }

    for (int i = 0; i < m_instances.numInstances(); i++) {
      updateMinMax(m_instances.instance(i));
    }

    m_ClusterCentroids = new Instances(m_instances, m_NumClusters);
    m_ClusterAssignments = new int [m_instances.numInstances()];

    Random RandomO = new Random(m_Seed);
    boolean [] selected = new boolean[m_instances.numInstances()];
    int instIndex;
    for (int i = 0; i < m_NumClusters; i++) {
      do {
	instIndex = Math.abs(RandomO.nextInt()) %
	  m_instances.numInstances();
      } while (selected[instIndex]);
      m_ClusterCentroids.add(m_instances.instance(instIndex));
      selected[instIndex] = true;
    }
    selected = null;

    boolean converged = false;
    while (!converged) {
      m_Iterations++;
      converged = true;
      for (int i = 0; i < m_instances.numInstances(); i++) {
	Instance toCluster = m_instances.instance(i);
	int newC = clusterProcessedInstance(toCluster);
	if (newC != m_ClusterAssignments[i]) {
	  converged = false;
	}
	m_ClusterAssignments[i] = newC;
	//	System.out.println(newC);
      }

      Instances [] tempI = new Instances[m_NumClusters];
      // update centroids
      m_ClusterCentroids = new Instances(m_instances, m_NumClusters);
      for (int i = 0; i < m_NumClusters; i++) {
	tempI[i] = new Instances(m_instances, 0);
      }
      for (int i = 0; i < m_instances.numInstances(); i++) {
	tempI[m_ClusterAssignments[i]].add(m_instances.instance(i));
      }
      for (int i = 0; i < m_NumClusters; i++) {
	double [] vals = new double[m_instances.numAttributes()];
	for (int j = 0; j < m_instances.numAttributes(); j++) {
	  vals[j] = tempI[i].meanOrMode(j);
	}
	m_ClusterCentroids.add(new Instance(1.0, vals));
      }
    }
  }

  /**
   * clusters an instance that has been through the filters
   *
   * @param instance the instance to assign a cluster to
   * @return a cluster number
   */
  private int clusterProcessedInstance(Instance instance) {
    double minDist = Integer.MAX_VALUE;
    int bestCluster = 0;
    for (int i = 0; i < m_NumClusters; i++) {
      double dist = distance(instance, m_ClusterCentroids.instance(i));
      if (dist < minDist) {
	minDist = dist;
	bestCluster = i;
      }
    }
    return bestCluster;
  }

  /**
   * Classifies a given instance.
   *
   * @param instance the instance to be assigned to a cluster
   * @return the number of the assigned cluster as an interger
   * if the class is enumerated, otherwise the predicted value
   * @exception Exception if instance could not be classified
   * successfully
   */
  public int clusterInstance(Instance instance) throws Exception {
    m_ReplaceMissingFilter.input(instance);
    m_ReplaceMissingFilter.batchFinished();
    Instance inst = m_ReplaceMissingFilter.output();

    return clusterProcessedInstance(inst);
  }

  /**
   * Calculates the distance between two instances
   *
   * @param test the first instance
   * @param train the second instance
   * @return the distance between the two given instances, between 0 and 1
   */
  private double distance(Instance first, Instance second) {

    double distance = 0;
    int firstI, secondI;

    for (int p1 = 0, p2 = 0;
	 p1 < first.numValues() || p2 < second.numValues();) {
      if (p1 >= first.numValues()) {
	firstI = m_instances.numAttributes();
      } else {
	firstI = first.index(p1);
      }
      if (p2 >= second.numValues()) {
	secondI = m_instances.numAttributes();
      } else {
	secondI = second.index(p2);
      }
      if (firstI == m_instances.classIndex()) {
	p1++; continue;
      }
      if (secondI == m_instances.classIndex()) {
	p2++; continue;
      }
      double diff;
      if (firstI == secondI) {
	diff = difference(firstI,
			  first.valueSparse(p1),
			  second.valueSparse(p2));
	p1++; p2++;
      } else if (firstI > secondI) {
	diff = difference(secondI,
			  0, second.valueSparse(p2));
	p2++;
      } else {
	diff = difference(firstI,
			  first.valueSparse(p1), 0);
	p1++;
      }
      distance += diff * diff;
    }

    return Math.sqrt(distance / m_instances.numAttributes());
  }

  /**
   * Computes the difference between two given attribute
   * values.
   */
  private double difference(int index, double val1, double val2) {

    switch (m_instances.attribute(index).type()) {
    case org.agentacademy.modules.dataminer.core.Attribute.NOMINAL:

      // If attribute is nominal
      if (Instance.isMissingValue(val1) ||
	  Instance.isMissingValue(val2) ||
	  ((int)val1 != (int)val2)) {
	return 1;
      } else {
	return 0;
      }
    case org.agentacademy.modules.dataminer.core.Attribute.NUMERIC:

      // If attribute is numeric
      if (Instance.isMissingValue(val1) ||
	  Instance.isMissingValue(val2)) {
	if (Instance.isMissingValue(val1) &&
	    Instance.isMissingValue(val2)) {
	  return 1;
	} else {
	  double diff;
	  if (Instance.isMissingValue(val2)) {
	    diff = norm(val1, index);
	  } else {
	    diff = norm(val2, index);
	  }
	  if (diff < 0.5) {
	    diff = 1.0 - diff;
	  }
	  return diff;
	}
      } else {
	return norm(val1, index) - norm(val2, index);
      }
    default:
      return 0;
    }
  }

  /**
   * Normalizes a given value of a numeric attribute.
   *
   * @param x the value to be normalized
   * @param i the attribute's index
   */
  private double norm(double x, int i) {

    if (Double.isNaN(m_Min[i]) || Utils.eq(m_Max[i],m_Min[i])) {
      return 0;
    } else {
      return (x - m_Min[i]) / (m_Max[i] - m_Min[i]);
    }
  }

  /**
   * Updates the minimum and maximum values for all the attributes
   * based on a new instance.
   *
   * @param instance the new instance
   */
  private void updateMinMax(Instance instance) {

    for (int j = 0;j < m_instances.numAttributes(); j++) {
      if (!instance.isMissing(j)) {
	if (Double.isNaN(m_Min[j])) {
	  m_Min[j] = instance.value(j);
	  m_Max[j] = instance.value(j);
	} else {
	  if (instance.value(j) < m_Min[j]) {
	    m_Min[j] = instance.value(j);
	  } else {
	    if (instance.value(j) > m_Max[j]) {
	      m_Max[j] = instance.value(j);
	    }
	  }
	}
      }
    }
  }

  /**

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产精品久久久久久妇女6080 | 老鸭窝一区二区久久精品| 555夜色666亚洲国产免| 午夜精品福利一区二区蜜股av| 97久久精品人人爽人人爽蜜臀| 中文字幕日韩精品一区| 中文字幕一区二区在线观看| 91网站在线播放| 在线观看免费视频综合| 欧美在线影院一区二区| 91在线码无精品| 欧美精品一区二区久久久| 欧美成人bangbros| 日韩亚洲欧美中文三级| 日韩1区2区3区| 国产精品自拍毛片| 男人的天堂亚洲一区| av一区二区久久| 国产麻豆精品久久一二三| 91视频91自| 成人激情av网| 国内精品第一页| 91麻豆免费看片| 欧美丰满美乳xxx高潮www| 99精品国产视频| 成人黄色网址在线观看| 精一区二区三区| 91在线云播放| 97精品久久久午夜一区二区三区 | 精品国产乱码久久久久久浪潮 | 99麻豆久久久国产精品免费| 久久免费偷拍视频| 国产美女一区二区| 久久久国产午夜精品| 国产美女视频一区| 日本一区二区成人| 不卡av在线免费观看| 中文字幕一区av| 日本道精品一区二区三区| 亚洲午夜久久久久久久久电影院| 一本到高清视频免费精品| 亚洲乱码国产乱码精品精98午夜 | 国产麻豆成人传媒免费观看| 日韩欧美高清dvd碟片| 精品无码三级在线观看视频| 精品对白一区国产伦| 国产成人在线免费观看| 国产午夜亚洲精品羞羞网站| 99麻豆久久久国产精品免费优播| 亚洲日本韩国一区| 欧美日本一区二区三区四区| 日日骚欧美日韩| 欧美精品一区二区高清在线观看 | 亚洲国产精品高清| 91原创在线视频| 婷婷激情综合网| 26uuu国产日韩综合| 不卡的av中国片| 天天综合色天天综合| 久久免费的精品国产v∧| 91丨国产丨九色丨pron| 五月激情综合网| 久久久综合九色合综国产精品| 91无套直看片红桃| 美日韩一区二区| 亚洲日本在线天堂| 日韩一区二区三区电影 | 一区二区在线观看免费视频播放| 欧美日韩国产综合一区二区三区 | 中文字幕高清一区| 欧美日韩情趣电影| 国产suv一区二区三区88区| 亚洲综合色视频| 日本一区二区三区高清不卡 | 久久久精品影视| 一本一道波多野结衣一区二区| 日本 国产 欧美色综合| 亚洲人成亚洲人成在线观看图片| 欧美一区二区三区视频免费播放| 成人网页在线观看| 麻豆视频一区二区| 亚洲综合在线免费观看| 久久久久国产精品麻豆ai换脸| 欧美色精品在线视频| 成人国产精品视频| 精品一区二区影视| 日韩一区欧美二区| 亚洲一区二区三区四区在线| 国产精品毛片久久久久久| 亚洲精品在线一区二区| 欧美日韩一级片网站| 97久久超碰国产精品| 粉嫩av亚洲一区二区图片| 精品一区二区三区在线视频| 午夜精品久久久久久久| 一区二区在线看| 综合激情成人伊人| 国产精品卡一卡二| 欧美极品少妇xxxxⅹ高跟鞋 | 日韩一级片在线观看| 欧美日韩国产一级二级| 色狠狠色狠狠综合| 色综合久久久久久久久久久| www.日韩av| 成人午夜视频免费看| 大白屁股一区二区视频| 风流少妇一区二区| 国产91精品欧美| 国产福利视频一区二区三区| 国内久久精品视频| 精品一区精品二区高清| 国产在线视频一区二区| 国产伦精品一区二区三区视频青涩 | 久久电影国产免费久久电影| 天堂va蜜桃一区二区三区| 午夜精品免费在线| 日韩二区在线观看| 日韩avvvv在线播放| 美女脱光内衣内裤视频久久影院| 人人狠狠综合久久亚洲| 久久精品国产免费| 国产精品一区不卡| k8久久久一区二区三区| 91丨porny丨首页| 日本道精品一区二区三区| 欧美日本在线一区| 欧美va在线播放| 中国色在线观看另类| 亚洲精品国产品国语在线app| 一区二区三区久久久| 日韩制服丝袜av| 国内外成人在线| av成人免费在线观看| 欧美中文字幕亚洲一区二区va在线 | 精品福利一区二区三区| 久久精品一区二区| 亚洲四区在线观看| 天天爽夜夜爽夜夜爽精品视频| 奇米影视一区二区三区小说| 国产一区二区在线观看视频| 北条麻妃一区二区三区| 欧美日韩成人高清| 国产夜色精品一区二区av| 亚洲天堂久久久久久久| 首页国产欧美久久| 国产精品自拍一区| 欧美在线视频日韩| 国产清纯美女被跳蛋高潮一区二区久久w| 国产精品久久久久永久免费观看 | 国产二区国产一区在线观看| 91色在线porny| 欧美大片一区二区三区| 成人欧美一区二区三区黑人麻豆 | 精品国产乱码久久久久久久 | 亚洲天堂中文字幕| 免费国产亚洲视频| 色综合天天综合在线视频| 91精品国产一区二区三区蜜臀| 国产精品久久久爽爽爽麻豆色哟哟| 午夜电影一区二区| 成人激情视频网站| 日韩欧美高清一区| 亚洲sss视频在线视频| 国产91精品在线观看| 日韩欧美一卡二卡| 亚洲综合自拍偷拍| 成人av午夜电影| 精品国产乱码久久久久久老虎 | 成人免费一区二区三区视频 | 欧美极品xxx| 捆绑变态av一区二区三区 | 99国产麻豆精品| 久久免费美女视频| 日韩国产在线一| 欧美三级在线视频| 亚洲男帅同性gay1069| 国产一区二区按摩在线观看| 91精品国产高清一区二区三区 | 激情图片小说一区| 欧美日韩一区二区在线观看视频| 综合婷婷亚洲小说| 99视频精品在线| 国产精品色在线观看| 国产成人在线视频免费播放| 精品久久久久av影院| 日本中文在线一区| 欧美日韩国产三级| 亚洲一区av在线| 欧美午夜精品久久久久久孕妇| 中文字幕日韩精品一区| 高清在线观看日韩| 国产亚洲一本大道中文在线| 精品综合久久久久久8888| 日韩欧美一二三区| 蜜桃视频免费观看一区| 日韩一区二区三区四区 | 精品剧情v国产在线观看在线| 午夜精品福利久久久| 欧美精品久久天天躁| 免费人成黄页网站在线一区二区|