?? ar_spa.m
字號:
function [w,A,B,R,P,F,ip] = ar_spa(ARP,nhz,E);
% AR_SPA decomposes an AR-spectrum into its compontents
% [w,A,B,R,P,F,ip] = ar_spa(AR,fs,E);
%
% INPUT:
% AR autoregressive parameters
% fs sampling rate, provide w and B in [Hz], if not given the result is in radians
% E noise level (mean square), gives A and F in units of E, if not given as relative amplitude
%
% OUTPUT
% w center frequency
% A Amplitude
% B bandwidth
% - less important output parameters -
% R residual
% P poles
% ip number of complex conjugate poles
% real(F) power, absolute values are obtained by multiplying with noise variance E(p+1)
% imag(F) assymetry, - " -
%
% All input and output parameters are organized in rows, one row
% corresponds to the parameters of one channel
%
% see also ACOVF ACORF DURLEV IDURLEV PARCOR YUWA
%
% REFERENCES:
% [1] Zetterberg L.H. (1969) Estimation of parameter for linear difference equation with application to EEG analysis. Math. Biosci., 5, 227-275.
% [2] Isaksson A. and Wennberg, A. (1975) Visual evaluation and computer analysis of the EEG - A comparison. Electroenceph. clin. Neurophysiol., 38: 79-86.
% [3] G. Florian and G. Pfurtscheller (1994) Autoregressive model based spectral analysis with application to EEG. IIG - Report Series, University of Technolgy Graz, Austria.
% $Revision: 1.9 $
% $Id: ar_spa.m,v 1.9 2004/02/23 15:29:16 schloegl Exp $
% Copyright (c) 1996-2003 by Alois Schloegl
% e-mail: a.schloegl@ieee.org
% This library is free software; you can redistribute it and/or
% modify it under the terms of the GNU Library General Public
% License as published by the Free Software Foundation; either
% Version 2 of the License, or (at your option) any later version.
%
% This library is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% Library General Public License for more details.
%
% You should have received a copy of the GNU Library General Public
% License along with this library; if not, write to the
% Free Software Foundation, Inc., 59 Temple Place - Suite 330,
% Boston, MA 02111-1307, USA.
[NTR,pp]=size(ARP);
R=zeros(size(ARP));
P=zeros(size(ARP));
w=zeros(size(ARP));
A=zeros(size(ARP));
B=zeros(size(ARP));
F=zeros(size(ARP));
for k = 1:NTR, %if ~mod(k,100),k, end;
[r,p,tmp] = residue(1,[1 -ARP(k,:)]);
[tmp,idx] = sort(-abs(r));
R(k,:) = r(idx)'; % Residual,
P(k,:) = p(idx)'; % Poles
%r(k,:)=roots([1 -ARP(k,:)])';
w(k,:) = angle(p(idx)'); % center frequency (in [radians])
A(k,:) = 1./abs(polyval([1 -ARP(k,:)],exp(i*w(k,:)))); % Amplitude
%A(k,:) = freqz(1,[1 -ARP(k,:)],w(k,:)); % Amplitude
%A2(k,:) = abs(r)'./abs(exp(i*w(k,:))-r'); % Amplitude
B(k,:) = -log(abs(p(idx)')); % Bandwidth
if nargout < 6,
elseif 0,
F(k,:) = (1+sign(imag(r(idx)')))./(polyval([-ARP(k,pp-1:-1:1).*(1:pp-1) pp],1./p(idx).').*polyval([-ARP(k,pp:-1:1) 1],p(idx).'));
elseif 1;
a3 = polyval([-ARP(k,pp-1:-1:1).*(1:pp-1), pp],1./p(idx).');
a = polyval([-ARP(k,pp:-1:1) 1],p(idx).');
F(k,:) = (1+(imag(P(k,:))~=0))./(a.*a3);
end;
end;
A = A.*sqrt(E(:,ones(1,pp)));
if nargin>1,
if size(nhz,1)==1,
nhz = nhz(ones(NTR,1),:);
end;
w = w.*nhz(:,ones(1,pp))/(2*pi);
B = B.*nhz(:,ones(1,pp))/(2*pi);
end;
if nargin>2,
F = F.*E(:,ones(1,pp));
end;
ip = sum(imag(P)~=0,2)/2;
np(:,1) = sum(imag(P')==0)'; % number of real poles
np(:,2) = pp-np(:,1); % number of imaginary poles
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -