?? ar2rc.m
字號:
function [MX,res,arg3] = ar2rc(ar);
% converts autoregressive parameters into reflection coefficients
% with the Durbin-Levinson recursion for multiple channels
% function [AR,RC,PE] = ar2rc(AR);
% function [MX,PE] = ar2rc(AR);
%
% INPUT:
% AR autoregressive model parameter
%
% OUTPUT
% AR autoregressive model parameter
% RC reflection coefficients (= -PARCOR coefficients)
% PE remaining error variance (relative to PE(1)=1)
% MX transformation matrix between ARP and RC (Attention: needs O(p^2) memory)
% AR = MX(:,K*(K-1)/2+(1:K));
% RC = MX(:,(1:K).*(2:K+1)/2);
%
% All input and output parameters are organized in rows, one row
% corresponds to the parameters of one channel
%
% see also ACOVF ACORF DURLEV RC2AR
%
% REFERENCES:
% P.J. Brockwell and R. A. Davis "Time Series: Theory and Methods", 2nd ed. Springer, 1991.
% S. Haykin "Adaptive Filter Theory" 3rd ed. Prentice Hall, 1996.
% M.B. Priestley "Spectral Analysis and Time Series" Academic Press, 1981.
% W.S. Wei "Time Series Analysis" Addison Wesley, 1990.
% Version 2.90 last revision 10.04.2002
% Copyright (c) 1996-2002 by Alois Schloegl
% e-mail: a.schloegl@ieee.org
% This library is free software; you can redistribute it and/or
% modify it under the terms of the GNU Library General Public
% License as published by the Free Software Foundation; either
% Version 2 of the License, or (at your option) any later version.
%
% This library is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% Library General Public License for more details.
%
% You should have received a copy of the GNU Library General Public
% License along with this library; if not, write to the
% Free Software Foundation, Inc., 59 Temple Place - Suite 330,
% Boston, MA 02111-1307, USA.
% Inititialization
[lr,lc]=size(ar);
res=[ones(lr,1) zeros(lr,lc)];
if nargout<3 % needs O(p^2) memory
MX=zeros(lr,lc*(lc+1)/2);
MX(:,lc*(lc-1)/2+(1:lc))=ar;
% Durbin-Levinson Algorithm
idx=lc*(lc-1)/2;
for K=lc:-1:2;
%idx=K*(K-1)/2; %see below
MX(:,(K-2)*(K-1)/2+(1:K-1)) = (MX(:,idx+(1:K-1)) + MX(:,(idx+K)*ones(K-1,1)).*MX(:,idx+(K-1:-1:1)))./((ones(lr,1)-abs(MX(:,idx+K)).^2)*ones(1,K-1));
idx=idx-K+1;
end;
for K=1:lc
idx=K*(K-1)/2; %see below
res(:,K+1) = res(:,K).*(1-abs(MX(:,idx+K)).^2);
end;
%arp=MX(:,K*(K-1)/2+(1:K));
%rc =MX(:,(1:K).*(2:K+1)/2);
else % needs O(p) memory
%ar=zeros(lr,lc);
rc=zeros(lr,lc);
rc(:,lc)=ar(:,lc);
MX=ar; % assign output
% Durbin-Levinson Algorithm
for K=lc-1:-1:1,
ar(:,1:K)=(ar(:,1:K)+ar(:,(K+1)*ones(K,1)).*ar(:,K:-1:1))./((ones(lr,1)-abs(ar(:,K+1)).^2)*ones(1,K));
rc(:,K)=ar(:,K);
end;
for K=1:lc,
res(:,K+1) = res(:,K) .* (1-abs(ar(:,K)).^2);
end;
% assign output arguments
arg3=res;
res=rc;
%MX=ar;
end; %if
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -