亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? gmr.m

?? gmm gmr gmm gmr
?? M
字號:
function [y, Sigma_y] = GMR(Priors, Mu, Sigma, x, in, out)
%
% This function performs Gaussian Mixture Regression (GMR), using the 
% parameters of a Gaussian Mixture Model (GMM). Given partial input data, 
% the algorithm computes the expected distribution for the resulting 
% dimensions. By providing temporal values as inputs, it thus outputs a 
% smooth generalized version of the data encoded in GMM, and associated 
% constraints expressed by covariance matrices.
%
% Inputs -----------------------------------------------------------------
%   o Priors:  1 x K array representing the prior probabilities of the K GMM 
%              components.
%   o Mu:      D x K array representing the centers of the K GMM components.
%   o Sigma:   D x D x K array representing the covariance matrices of the 
%              K GMM components.
%   o x:       P x N array representing N datapoints of P dimensions.
%   o in:      1 x P array representing the dimensions to consider as
%              inputs.
%   o out:     1 x Q array representing the dimensions to consider as
%              outputs (D=P+Q).
% Outputs ----------------------------------------------------------------
%   o y:       Q x N array representing the retrieved N datapoints of 
%              Q dimensions, i.e. expected means.
%   o Sigma_y: Q x Q x N array representing the N expected covariance 
%              matrices retrieved. 
%
% Copyright (c) 2006 Sylvain Calinon, LASA Lab, EPFL, CH-1015 Lausanne,
%               Switzerland, http://lasa.epfl.ch
%
% The program is free for non-commercial academic use. 
% Please contact the authors if you are interested in using the 
% software for commercial purposes. The software must not be modified or 
% distributed without prior permission of the authors.
% Please acknowledge the authors in any academic publications that have 
% made use of this code or part of it. Please use this BibTex reference: 
% 
% @article{Calinon06SMC,
%   title="On Learning, Representing and Generalizing a Task in a Humanoid 
%     Robot",
%   author="S. Calinon and F. Guenter and A. Billard",
%   journal="IEEE Transactions on Systems, Man and Cybernetics, Part B. 
%     Special issue on robot learning by observation, demonstration and 
%     imitation",
%   year="2006",
%   volume="36",
%   number="5"
% }

nbData = length(x);
nbVar = size(Mu,1);
nbStates = size(Sigma,3);

%% Fast matrix computation (see the commented code for a version involving 
%% one-by-one computation, which is easier to understand).
%%
%% Compute the influence of each GMM component, given input x
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:nbStates
  Pxi(:,i) = Priors(i).*gaussPDF(x, Mu(in,i), Sigma(in,in,i));
end
beta = Pxi./repmat(sum(Pxi,2)+realmin,1,nbStates);
%% Compute expected means y, given input x
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for j=1:nbStates
  y_tmp(:,:,j) = repmat(Mu(out,j),1,nbData) + Sigma(out,in,j)*inv(Sigma(in,in,j)) * (x-repmat(Mu(in,j),1,nbData));
end
beta_tmp = reshape(beta,[1 size(beta)]);
y_tmp2 = repmat(beta_tmp,[length(out) 1 1]) .* y_tmp;
y = sum(y_tmp2,3);
%% Compute expected covariance matrices Sigma_y, given input x
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for j=1:nbStates
  Sigma_y_tmp(:,:,1,j) = Sigma(out,out,j) - (Sigma(out,in,j)*inv(Sigma(in,in,j))*Sigma(in,out,j));
end
beta_tmp = reshape(beta,[1 1 size(beta)]);
Sigma_y_tmp2 = repmat(beta_tmp.*beta_tmp, [length(out) length(out) 1 1]) .* repmat(Sigma_y_tmp,[1 1 nbData 1]);
Sigma_y = sum(Sigma_y_tmp2,4);


% %% Slow one-by-one computation (better suited to understand the algorithm) 
% %%
% %% Compute the influence of each GMM component, given input x
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% for i=1:nbStates
%   Pxi(:,i) = gaussPDF(x, Mu(in,i), Sigma(in,in,i));
% end
% beta = (Pxi./repmat(sum(Pxi,2)+realmin,1,nbStates))';
% %% Compute expected output distribution, given input x
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% y = zeros(length(out), nbData);
% Sigma_y = zeros(length(out), length(out), nbData);
% for i=1:nbData
%   % Compute expected means y, given input x
%   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%   for j=1:nbStates
%     yj_tmp = Mu(out,j) + Sigma(out,in,j)*inv(Sigma(in,in,j)) * (x(:,i)-Mu(in,j));
%     y(:,i) = y(:,i) + beta(j,i).*yj_tmp;
%   end
%   % Compute expected covariance matrices Sigma_y, given input x
%   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%   for j=1:nbStates
%     Sigmaj_y_tmp = Sigma(out,out,j) - (Sigma(out,in,j)*inv(Sigma(in,in,j))*Sigma(in,out,j));
%     Sigma_y(:,:,i) = Sigma_y(:,:,i) + beta(j,i)^2.* Sigmaj_y_tmp;
%   end
% end

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
青草国产精品久久久久久| 久久九九久久九九| 亚洲国产sm捆绑调教视频 | 日韩免费在线观看| 天天av天天翘天天综合网色鬼国产 | av在线一区二区| 综合婷婷亚洲小说| 欧美午夜精品电影| 日本不卡中文字幕| 久久精品在这里| 99久久久久久99| 亚洲成人1区2区| 日韩精品一区国产麻豆| 国产99久久久国产精品| 国产成人免费视频网站高清观看视频 | 国产精品中文欧美| 国产精品久久午夜夜伦鲁鲁| 91小视频在线观看| 青娱乐精品视频| 欧美激情一区二区三区蜜桃视频| 色猫猫国产区一区二在线视频| 日本午夜精品视频在线观看| www久久精品| 欧洲一区二区三区在线| 蜜臀精品一区二区三区在线观看| 国产精品美女久久久久aⅴ国产馆 国产精品美女久久久久av爽李琼 国产精品美女久久久久高潮 | 欧美mv日韩mv国产| 99视频在线精品| 免费在线欧美视频| 1区2区3区欧美| 日韩视频免费观看高清完整版在线观看| 成人午夜视频网站| 奇米精品一区二区三区在线观看一| 国产校园另类小说区| 欧美日韩视频在线一区二区| 国产一区二区91| 亚洲成在人线免费| 亚洲欧洲99久久| 欧美电影免费观看高清完整版在线 | 在线不卡免费av| 成人午夜av在线| 久久精品99国产国产精| 亚洲少妇30p| 久久久不卡影院| 日韩欧美美女一区二区三区| 欧美中文字幕一二三区视频| 国产激情精品久久久第一区二区| 日韩在线a电影| 亚洲精品大片www| 国产清纯白嫩初高生在线观看91 | 不卡的av电影| 国模无码大尺度一区二区三区| 亚洲一区在线观看免费观看电影高清| 国产女主播在线一区二区| 91精品国产综合久久久久久久久久| av中文字幕在线不卡| 久久激情五月婷婷| 五月婷婷欧美视频| 一区二区三区在线高清| 中文字幕五月欧美| 久久九九99视频| 国产婷婷色一区二区三区四区| 日韩亚洲欧美一区| 欧美肥妇bbw| 亚洲国产岛国毛片在线| 国产区在线观看成人精品 | 高清成人免费视频| 国产一区二区三区国产| 国产一区美女在线| 久久精品国产99久久6| 麻豆国产一区二区| 蜜桃av一区二区在线观看| 石原莉奈在线亚洲二区| 亚洲国产成人tv| 视频一区二区中文字幕| 日韩国产欧美视频| 免费人成在线不卡| 国产尤物一区二区在线| 国产伦精一区二区三区| 国产毛片精品国产一区二区三区| 国产精品一品二品| 成人动漫视频在线| 99久久99久久精品国产片果冻| 色综合天天视频在线观看| 色综合色狠狠综合色| 色婷婷久久久综合中文字幕| 91久久精品国产91性色tv| 欧美在线观看你懂的| 欧美日本韩国一区| 91精品国产综合久久久久久久久久| 日韩欧美电影在线| 国产色产综合产在线视频| 国产精品黄色在线观看 | 亚洲在线视频网站| 午夜精品福利一区二区三区av | 亚洲欧美视频在线观看| 亚洲综合久久久| 老司机免费视频一区二区三区| 国产在线精品一区二区不卡了| 国产成都精品91一区二区三| 色呦呦网站一区| 91精品中文字幕一区二区三区| 欧美mv和日韩mv的网站| 国产精品二三区| 亚洲主播在线播放| 韩国精品免费视频| 一本久久综合亚洲鲁鲁五月天 | 国产成人av一区二区三区在线| 91丝袜高跟美女视频| 欧美日韩美女一区二区| 欧美电视剧免费全集观看 | 亚洲人精品一区| 午夜电影网亚洲视频| 国产美女视频91| 精品视频免费在线| 久久精品综合网| 亚洲福利视频一区| 国产激情视频一区二区三区欧美 | 麻豆专区一区二区三区四区五区| 国产成人自拍在线| 91精品视频网| 日韩毛片视频在线看| 蜜臀av一区二区在线免费观看 | 欧美亚洲综合另类| 久久伊人中文字幕| 亚洲午夜视频在线| 成人小视频免费观看| 7777精品久久久大香线蕉| 中文字幕在线观看不卡视频| 日本在线观看不卡视频| 91啪九色porn原创视频在线观看| 日韩午夜在线影院| 亚洲一区二区精品视频| 国产不卡视频一区| 欧美一区午夜精品| 欧美专区亚洲专区| 韩国v欧美v日本v亚洲v| 日韩美女天天操| 欧美视频在线观看一区| 久久伊99综合婷婷久久伊| 午夜天堂影视香蕉久久| 91免费看片在线观看| 国产人久久人人人人爽| 激情欧美一区二区| 欧美日韩精品电影| 亚洲一区二区三区在线播放| 成a人片国产精品| 亚洲精品一区二区在线观看| 天天做天天摸天天爽国产一区| 色综合久久中文综合久久牛| 国产精品天干天干在观线| 国产一区二区三区四区在线观看| 成人听书哪个软件好| 国产精品一区二区不卡| 亚洲国产精品影院| 日韩和欧美一区二区三区| 色综合中文字幕国产| 久久亚洲精品国产精品紫薇| 毛片不卡一区二区| 日韩精品一区二区三区在线观看 | 日本中文在线一区| 欧美中文字幕不卡| 一区二区三区中文在线| 色综合久久88色综合天天免费| 国产精品国产自产拍在线| 国产·精品毛片| 精品国产一区二区在线观看| 欧美第一区第二区| 日本一区二区在线不卡| 国产欧美一区二区在线| 亚洲综合精品自拍| 日本午夜一本久久久综合| 亚洲色图第一区| 一区二区三区不卡在线观看| 亚洲一区二区影院| 午夜精品成人在线视频| 老司机免费视频一区二区| 欧美优质美女网站| 一区二区在线观看不卡| 欧美午夜免费电影| 石原莉奈一区二区三区在线观看| 91精品国产黑色紧身裤美女| 美女一区二区视频| 国产欧美一区二区三区在线看蜜臀| 成人永久免费视频| 亚洲人成网站影音先锋播放| 欧美性生活久久| 免费在线视频一区| 中文字幕av一区 二区| 99国产精品国产精品久久| 洋洋av久久久久久久一区| 欧美精品精品一区| 久久99九九99精品| 中文字幕一区二区三区不卡在线| 91久久久免费一区二区| 美国一区二区三区在线播放| 久久久777精品电影网影网| 色一情一乱一乱一91av| 美腿丝袜亚洲三区| 欧美激情一区不卡|