?? glmhess.m
字號:
function [h, dh] = glmhess(net, x, t, dh)%GLMHESS Evaluate the Hessian matrix for a generalised linear model.%% Description% H = GLMHESS(NET, X, T) takes a GLM network data structure NET, a% matrix X of input values, and a matrix T of target values and returns% the full Hessian matrix H corresponding to the second derivatives of% the negative log posterior distribution, evaluated for the current% weight and bias values as defined by NET. Note that the target data% is not required in the calculation, but is included to make the% interface uniform with NETHESS. For linear and logistic outputs, the% computation is very simple and is done (in effect) in one line in% GLMTRAIN.%% See also% GLM, GLMTRAIN, HESSCHEK, NETHESS%% Copyright (c) Christopher M Bishop, Ian T Nabney (1996, 1997)% Made to look more like mlphess by K. Murphyif nargin == 3 % Data term in Hessian needs to be computed dh = datahess(net, x, t);endif isfield(net, 'beta') h = net.beta*dh;else h = dh;endif isfield(net, 'alpha') if size(net.alpha) == [1 1] h = h + net.alpha*eye(net.nwts); else h = h + diag(net.index*net.alpha); end end%%%%%%%%%%function dh = datahess(net, x, t)ndata = size(x, 1);nparams = net.nwts;nout = net.nout;p = glmfwd(net, x);dh = zeros(nparams); % Full Hessian matrixinputs = [x ones(ndata, 1)];switch net.actfn case 'linear' % No weighting function here out_hess = [x ones(ndata, 1)]'*[x ones(ndata, 1)]; for j = 1:nout dh = rearrange_hess(net, j, out_hess, dh); end case 'logistic' % Each output is independent e = ones(1, net.nin+1); link_deriv = p.*(1-p); out_hess = zeros(net.nin+1); for j = 1:nout inputs = [x ones(ndata, 1)].*(sqrt(link_deriv(:,j))*e); out_hess = inputs'*inputs; % Hessian for this output dh = rearrange_hess(net, j, out_hess, dh); end case 'softmax' bb_start = nparams - nout + 1; % Start of bias weights block ex_hess = zeros(nparams); % Contribution to Hessian from single example for m = 1:ndata X = x(m,:)'*x(m,:); a = diag(p(m,:))-((p(m,:)')*p(m,:)); ex_hess(1:nparams-nout,1:nparams-nout) = kron(a, X); ex_hess(bb_start:nparams, bb_start:nparams) = a.*ones(net.nout, net.nout); temp = kron(a, x(m,:)); ex_hess(bb_start:nparams, 1:nparams-nout) = temp; ex_hess(1:nparams-nout, bb_start:nparams) = temp'; dh = dh + ex_hess; endend %%%%%%%%%%%%function dh = rearrange_hess(net, j, out_hess, dh)% Because all the biases come after all the input weights,% we have to rearrange the blocks that make up the network Hessian.% This function assumes that we are on the jth output and that all outputs% are independent.bb_start = net.nwts - net.nout + 1; % Start of bias weights blockob_start = 1+(j-1)*net.nin; % Start of weight block for jth outputob_end = j*net.nin; % End of weight block for jth outputb_index = bb_start+(j-1); % Index of bias weight% Put input weight block in right placedh(ob_start:ob_end, ob_start:ob_end) = out_hess(1:net.nin, 1:net.nin);% Put second derivative of bias weight in right placedh(b_index, b_index) = out_hess(net.nin+1, net.nin+1);% Put cross terms (input weight v bias weight) in right placedh(b_index, ob_start:ob_end) = out_hess(net.nin+1,1:net.nin);dh(ob_start:ob_end, b_index) = out_hess(1:net.nin, net.nin+1);return
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -