?? glmfwd.m
字號:
function [y, a] = glmfwd(net, x)%GLMFWD Forward propagation through generalized linear model.%% Description% Y = GLMFWD(NET, X) takes a generalized linear model data structure% NET together with a matrix X of input vectors, and forward propagates% the inputs through the network to generate a matrix Y of output% vectors. Each row of X corresponds to one input vector and each row% of Y corresponds to one output vector.%% [Y, A] = GLMFWD(NET, X) also returns a matrix A giving the summed% inputs to each output unit, where each row corresponds to one% pattern.%% See also% GLM, GLMPAK, GLMUNPAK, GLMERR, GLMGRAD%% Copyright (c) Christopher M Bishop, Ian T Nabney (1996, 1997)% Check arguments for consistencyerrstring = consist(net, 'glm', x);if ~isempty(errstring); error(errstring);endndata = size(x, 1);a = x*net.w1 + ones(ndata, 1)*net.b1;switch net.actfn case 'linear' %Linear outputs y = a; case 'logistic' % Logistic outputs % Prevent overflow and underflow: use same bounds as glmerr % Ensure that log(1-y) is computable: need exp(a) > eps maxcut = -log(eps); % Ensure that log(y) is computable mincut = -log(1/realmin - 1); y = 1./(1 + exp(-a)); case 'softmax' % Softmax outputs nout = size(a,2); % Prevent overflow and underflow: use same bounds as glmerr % Ensure that sum(exp(a), 2) does not overflow maxcut = log(realmax) - log(nout); % Ensure that exp(a) > 0 mincut = log(realmin); a = min(a, maxcut); a = max(a, mincut); temp = exp(a); y = temp./(sum(temp, 2)*ones(1,nout));end
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -