?? gmmem.m
字號:
function [mix, options, errlog] = gmmem(mix, x, options)%GMMEM EM algorithm for Gaussian mixture model.%% Description% [MIX, OPTIONS, ERRLOG] = GMMEM(MIX, X, OPTIONS) uses the Expectation% Maximization algorithm of Dempster et al. to estimate the parameters% of a Gaussian mixture model defined by a data structure MIX. The% matrix X represents the data whose expectation is maximized, with% each row corresponding to a vector. The optional parameters have% the following interpretations.%% OPTIONS(1) is set to 1 to display error values; also logs error% values in the return argument ERRLOG. If OPTIONS(1) is set to 0, then% only warning messages are displayed. If OPTIONS(1) is -1, then% nothing is displayed.%% OPTIONS(3) is a measure of the absolute precision required of the% error function at the solution. If the change in log likelihood% between two steps of the EM algorithm is less than this value, then% the function terminates.%% OPTIONS(5) is set to 1 if a covariance matrix is reset to its% original value when any of its singular values are too small (less% than eps). With the default value of 0 no action is taken.%% OPTIONS(14) is the maximum number of iterations; default 100.%% The optional return value OPTIONS contains the final error value% (i.e. data log likelihood) in OPTIONS(8).%% See also% GMM, GMMINIT%% Copyright (c) Christopher M Bishop, Ian T Nabney (1996, 1997)% Check that inputs are consistenterrstring = consist(mix, 'gmm', x);if ~isempty(errstring) error(errstring);end[ndata, xdim] = size(x);% Sort out the optionsif (options(14)) niters = options(14);else niters = 100;enddisplay = options(1);store = 0;if (nargout > 2) store = 1; % Store the error values to return them errlog = zeros(1, niters);endtest = 0;if options(3) > 0.0 test = 1; % Test log likelihood for terminationendcheck_covars = 0;if options(5) >= 1 disp('check_covars is on'); check_covars = 1; % Ensure that covariances don't collapse MIN_COVAR = eps; % Minimum singular value of covariance matrix init_covars = mix.covars;end% Main loop of algorithmfor n = 1:niters % Calculate posteriors based on old parameters [post, act] = gmmpost(mix, x); % Calculate error value if needed if (display | store | test) prob = act*(mix.priors)'; % Error value is negative log likelihood of data e = - sum(log(prob)); if store errlog(n) = e; end if display > 0 fprintf(1, 'Cycle %4d Error %11.6f\n', n, e); end if test if (n > 1 & abs(e - eold) < options(3)) options(8) = e; return; else eold = e; end end end % Adjust the new estimates for the parameters new_pr = sum(post, 1); new_c = post' * x; % Now move new estimates to old parameter vectors mix.priors = new_pr ./ ndata; mix.centres = new_c ./ (new_pr' * ones(1, mix.nin)); switch mix.covar_type case 'spherical' n2 = dist2(x, mix.centres); for j = 1:mix.ncentres v(j) = (post(:,j)'*n2(:,j)); end mix.covars = ((v./new_pr))./mix.nin; if check_covars % Ensure that no covariance is too small for j = 1:mix.ncentres if mix.covars(j) < MIN_COVAR mix.covars(j) = init_covars(j); end end end case 'diag' for j = 1:mix.ncentres diffs = x - (ones(ndata, 1) * mix.centres(j,:)); mix.covars(j,:) = sum((diffs.*diffs).*(post(:,j)*ones(1, ... mix.nin)), 1)./new_pr(j); end if check_covars % Ensure that no covariance is too small for j = 1:mix.ncentres if min(mix.covars(j,:)) < MIN_COVAR mix.covars(j,:) = init_covars(j,:); end end end case 'full' for j = 1:mix.ncentres diffs = x - (ones(ndata, 1) * mix.centres(j,:)); diffs = diffs.*(sqrt(post(:,j))*ones(1, mix.nin)); mix.covars(:,:,j) = (diffs'*diffs)/new_pr(j); end if check_covars % Ensure that no covariance is too small for j = 1:mix.ncentres if min(svd(mix.covars(:,:,j))) < MIN_COVAR mix.covars(:,:,j) = init_covars(:,:,j); end end end endendoptions(8) = -sum(log(gmmprob(mix, x)));if (display >= 0) % disp('Warning: Maximum number of iterations has been exceeded');end
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -