亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? learn_dhmm.m

?? Bayes網(wǎng)絡(luò)工具箱
?? M
字號(hào):
function [LL, prior, transmat, obsmat, gamma] = learn_dhmm(data, prior, transmat, obsmat, max_iter, thresh, ...						  verbose, act, adj_prior, adj_trans, adj_obs, dirichlet)% LEARN_HMM Find the ML parameters of an HMM with discrete outputs using EM.%% [LL, PRIOR, TRANSMAT, OBSMAT] = LEARN_HMM(DATA, PRIOR0, TRANSMAT0, OBSMAT0) computes ML% estimates of the following parameters, where, for each time t, Q(t) is the hidden state, and% Y(t) is the observation%   prior(i) = Pr(Q(1) = i)%   transmat(i,j) = Pr(Q(t+1)=j | Q(t)=i)%   obsmat(i,o) = Pr(Y(t)=o | Q(t)=i)% PRIOR0 is the initial estimate of PRIOR, etc.%% Row l of DATA is the observation sequence for example l. If the sequences are of% different lengths, you can pass in a cell array, so DATA{l} is a vector.% If there is only one sequence, the estimate of prior will be poor.% If all the sequences are of length 1, transmat cannot be estimated.%% LL is the "learning curve": a vector of the log likelihood values at each iteration.%% There are several optional arguments, which should be passed in the following order%   LEARN_HMM(DATA, PRIOR, TRANSMAT, OBSMAT, MAX_ITER, THRESH, VERBOSE)% These have the following meanings%   max_iter = max. num EM steps to take (default 10)%   thresh = threshold for stopping EM (default 1e-4)%   verbose = 0 to suppress the display of the log lik at each iteration (Default 1).%% If the transition matrix is non-stationary (e.g., as in a POMDP),% then TRANSMAT should be a cell array, where T{a}(i,j) = Pr(Q(t+1)=j|Q(t)=i,A(t)=a).% The last arg should specify the sequence of actions in the same form as DATA:%   LEARN_HMM(DATA, PRIOR, TRANSMAT, OBSMAT, MAX_ITER, THRESH, VERBOSE, As)% The action at time 1 is ignored.%% If you want to clamp some of the parameters at fixed values, set the corresponding adjustable% argument to 0 (default: everything is adjustable)%   LEARN_HMM(..., VERBOSE, As, ADJ_PRIOR, ADJ_TRANS, ADJ_OBS)%% To avoid 0s when estimating OBSMAT, specify a non-zero equivalent sample size (e.g., 0.01) for% the Dirichlet prior: LEARN_HMM(..., ADJ_OBS, DIRICHLET)%% When there is a single sequence, the smoothed posteriors using the penultimate set of% parameters are returned in GAMMA:%   [LL, PRIOR, TRANSMAT, OBSMAT, GAMMA] = LEARN_HMM(...)% This can be useful for online learning and decision making.%learn_dhmm(data, prior, transmat, obsmat, max_iter, thresh, verbose, act, adj_prior, adj_trans, adj_obs, dirichlet)if nargin < 5, max_iter = 10; endif nargin < 6, thresh = 1e-4; endif nargin < 7, verbose = 1; endif nargin < 8  act = [];  A = 0;else  A = length(transmat);endif nargin < 9, adj_prior = 1; endif nargin < 10, adj_trans = 1; endif nargin < 11, adj_obs = 1; endif nargin < 12, dirichlet = 0; endprevious_loglik = -inf;loglik = 0;converged = 0;num_iter = 1;LL = [];if ~iscell(data)  data = num2cell(data, 2); % each row gets its own cellendif ~isempty(act) & ~iscell(act)  act = num2cell(act, 2);endnumex = length(data);while (num_iter <= max_iter) & ~converged  % E step  [loglik, exp_num_trans, exp_num_visits1, exp_num_emit, gamma] = ...      compute_ess(prior, transmat, obsmat, data, act, dirichlet);  if verbose, fprintf(1, 'iteration %d, loglik = %f\n', num_iter, loglik); end  num_iter =  num_iter + 1;  % M step  if adj_prior    prior = normalise(exp_num_visits1);  end  if adj_trans & ~isempty(exp_num_trans)    if isempty(act)      transmat = mk_stochastic(exp_num_trans);    else      for a=1:A	transmat{a} = mk_stochastic(exp_num_trans{a});      end    end  end  if adj_obs    obsmat = mk_stochastic(exp_num_emit);  end    converged = em_converged(loglik, previous_loglik, thresh);  previous_loglik = loglik;  LL = [LL loglik];end%%%%%%%%%%%function [loglik, exp_num_trans, exp_num_visits1, exp_num_emit, gamma] = ...    compute_ess(prior, transmat, obsmat, data, act, dirichlet)%% Compute the Expected Sufficient Statistics for a discrete Hidden Markov Model.%% Outputs:% exp_num_trans(i,j) = sum_l sum_{t=2}^T Pr(X(t-1) = i, X(t) = j| Obs(l))% exp_num_visits1(i) = sum_l Pr(X(1)=i | Obs(l))% exp_num_emit(i,o) = sum_l sum_{t=1}^T Pr(X(t) = i, O(t)=o| Obs(l))% where Obs(l) = O_1 .. O_T for sequence l.numex = length(data);[S O] = size(obsmat);if isempty(act)  exp_num_trans = zeros(S,S);  A = 0;else  A = length(transmat);  exp_num_trans = cell(1,A);  for a=1:A    exp_num_trans{a} = zeros(S,S);  endendexp_num_visits1 = zeros(S,1);exp_num_emit = dirichlet*ones(S,O);loglik = 0;estimated_trans = 0;for ex=1:numex  obs = data{ex};  T = length(obs);  olikseq = mk_dhmm_obs_lik(obs, obsmat);  if isempty(act)    [gamma, xi, current_ll] = forwards_backwards(prior, transmat, olikseq);  else    [gamma, xi, current_ll] = forwards_backwards_pomdp(prior, transmat, olikseq, act{ex});  end  loglik = loglik +  current_ll;   if T > 1    estimated_trans = 1;    if isempty(act)      exp_num_trans = exp_num_trans + sum(xi,3);    else      % act(2) determines Q(2), xi(:,:,1) holds P(Q(1), Q(2))      A = length(transmat);      for a=1:A	ndx = find(act{ex}(2:end)==a);	if ~isempty(ndx)	  exp_num_trans{a} = exp_num_trans{a} + sum(xi(:,:,ndx), 3);	end      end    end  end    exp_num_visits1 = exp_num_visits1 + gamma(:,1);    if T < O    for t=1:T      o = obs(t);      exp_num_emit(:,o) = exp_num_emit(:,o) + gamma(:,t);    end  else    for o=1:O      ndx = find(obs==o);      if ~isempty(ndx)	exp_num_emit(:,o) = exp_num_emit(:,o) + sum(gamma(:, ndx), 2);      end    end  endendif ~estimated_trans  exp_num_trans = [];end

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
777久久久精品| 国产成人在线观看免费网站| 欧美性大战久久| 亚洲福利一区二区| 日韩三级在线免费观看| 免费在线观看不卡| 日韩免费视频线观看| 国产精品综合视频| 自拍偷拍欧美精品| 欧美亚洲一区二区三区四区| 午夜免费欧美电影| 精品福利一区二区三区免费视频| 国产伦精品一区二区三区在线观看| 国产精品午夜春色av| 91麻豆文化传媒在线观看| 亚洲综合丁香婷婷六月香| 日韩亚洲欧美在线| 国产一区二区视频在线播放| 国产精品久久久久久福利一牛影视| 一本到一区二区三区| 天天影视涩香欲综合网 | 91蜜桃婷婷狠狠久久综合9色| 亚洲激情六月丁香| 欧美大片免费久久精品三p| 成人av午夜电影| 日韩电影免费在线看| 国产欧美日韩精品a在线观看| 欧美在线制服丝袜| 国产精品综合一区二区| 亚洲国产日韩精品| 久久久久久免费| 欧洲中文字幕精品| 国产一区二区三区在线看麻豆| 亚洲欧美欧美一区二区三区| 精品少妇一区二区三区免费观看| 成人av片在线观看| 久久电影网电视剧免费观看| 激情文学综合插| 亚洲欧美色一区| 精品国产制服丝袜高跟| 日本韩国欧美在线| 国产成都精品91一区二区三| 日本女人一区二区三区| 亚洲欧美一区二区三区孕妇| 久久亚洲精品国产精品紫薇| 欧美理论片在线| 91在线高清观看| 国产精一品亚洲二区在线视频| 性做久久久久久久久| 中文字幕一区二区三区在线播放 | 成人毛片视频在线观看| 日本不卡中文字幕| 亚洲一区在线观看网站| 国产拍欧美日韩视频二区| 欧美美女喷水视频| 一本一本大道香蕉久在线精品 | 久久久久久综合| 欧美日韩国产天堂| 91小视频在线观看| 国产成人av电影免费在线观看| 美女脱光内衣内裤视频久久网站 | 欧美mv和日韩mv的网站| 欧美日韩美少妇| 欧美在线免费观看亚洲| 色综合欧美在线| 色综合中文字幕国产| 国产一区二区三区免费| 精品在线视频一区| 六月婷婷色综合| 麻豆一区二区在线| 免费观看一级欧美片| 亚洲午夜精品17c| 亚洲一区二区在线播放相泽| 亚洲六月丁香色婷婷综合久久| 国产精品国产精品国产专区不片| 中文一区一区三区高中清不卡| 国产色产综合色产在线视频| 久久久www免费人成精品| 久久中文娱乐网| 国产日韩欧美激情| 国产欧美日韩精品一区| 国产精品毛片久久久久久| 国产喷白浆一区二区三区| 国产精品三级在线观看| 亚洲天堂网中文字| 一二三四区精品视频| 亚洲午夜三级在线| 天天影视涩香欲综合网| 男女性色大片免费观看一区二区| 免费高清在线视频一区·| 国产一区亚洲一区| 成人高清在线视频| 色噜噜狠狠一区二区三区果冻| 2017欧美狠狠色| 久久亚洲捆绑美女| 国产精品久久久久久久久快鸭 | 日本vs亚洲vs韩国一区三区| 亚洲午夜成aⅴ人片| 亚洲成人自拍一区| 麻豆国产精品官网| 国产凹凸在线观看一区二区| 色综合天天性综合| 欧美老女人第四色| 久久网站最新地址| 综合电影一区二区三区| 亚洲一区在线看| 激情成人综合网| 99久久免费国产| 欧美久久久久免费| 久久综合国产精品| 一区二区三区美女| 久久99久久99小草精品免视看| 成人综合在线视频| 欧美日韩激情一区二区| 国产欧美一区二区三区网站| 一区二区三区丝袜| 精品在线免费视频| 色综合久久99| 2024国产精品| 亚洲一级片在线观看| 国产乱人伦精品一区二区在线观看| 色婷婷综合久久久中文一区二区 | 亚洲午夜在线视频| 精品一二三四区| 在线视频中文字幕一区二区| 精品少妇一区二区三区免费观看 | 亚洲一区二区3| 精品无人区卡一卡二卡三乱码免费卡 | 精品国产乱子伦一区| 亚洲精品免费在线观看| 狠狠色狠狠色合久久伊人| 色婷婷激情一区二区三区| 精品久久久久香蕉网| 亚洲成a人在线观看| 懂色av一区二区在线播放| 欧美一级片在线| 亚洲最大成人网4388xx| 成人中文字幕电影| 日韩欧美一区二区在线视频| 亚洲影院在线观看| 福利电影一区二区| 欧美sm极限捆绑bd| 日本成人中文字幕在线视频| 91黄视频在线| 国产精品久久久久久久久图文区| 国产在线看一区| 日韩一区二区三区免费看| 一个色妞综合视频在线观看| 波多野结衣一区二区三区| www国产精品av| 精品一区二区三区视频| 欧美一级片在线观看| 五月天视频一区| 久久久久国产成人精品亚洲午夜| 亚洲自拍另类综合| 91国偷自产一区二区三区观看| 国产精品久久久99| 国产成人亚洲综合a∨婷婷| 精品国产麻豆免费人成网站| 男男视频亚洲欧美| 欧美一区二区三区啪啪| 日本成人在线看| 欧美一区二区三区影视| 日韩国产欧美在线视频| 欧美高清视频在线高清观看mv色露露十八| 亚洲精品免费看| 日本丰满少妇一区二区三区| 亚洲欧洲综合另类在线| 色婷婷av一区二区三区之一色屋| 亚洲视频网在线直播| 色天天综合久久久久综合片| 一区二区三区中文在线观看| 91福利在线播放| 亚洲高清视频在线| 欧美肥大bbwbbw高潮| 美腿丝袜一区二区三区| 精品久久五月天| 国产精品66部| 中文字幕在线不卡| 欧美中文字幕一二三区视频| 五月天亚洲精品| 欧美变态tickling挠脚心| 国产麻豆一精品一av一免费| 日本一二三四高清不卡| 色视频成人在线观看免| 亚洲国产精品嫩草影院| 欧美一区二区三区性视频| 国内成+人亚洲+欧美+综合在线| 国产欧美精品国产国产专区| 波多野结衣视频一区| 亚洲亚洲精品在线观看| 欧美日韩国产一级| 国产在线一区二区综合免费视频| 国产精品国产三级国产有无不卡 | 不卡电影一区二区三区| 亚洲精品网站在线观看| 欧美一卡2卡3卡4卡| 国产成人a级片| 亚洲一区中文日韩| 精品久久久三级丝袜|