?? forwards_backwards.m
字號:
function [gamma, xi, loglik] = forwards_backwards(prior, transmat, obslik, filter_only)% FORWARDS_BACKWARDS Compute the posterior probs. in an HMM using the forwards backwards algo.% [gamma, xi, loglik] = forwards_backwards(prior, transmat, obslik, filter_only)% 'filter_only' is an optional argument (default: 0). If 1, we do filtering, if 0, smoothing.% Use obslik = mk_dhmm_obs_lik(data, b) or obslik = mk_ghmm_obs_lik(data, mu, sigma) first.%% Inputs:% PRIOR(I) = Pr(Q(1) = I)% TRANSMAT(I,J) = Pr(Q(T+1)=J | Q(T)=I)% OBSLIK(I,T) = Pr(Y(T) | Q(T)=I)%% Outputs:% gamma(i,t) = Pr(X(t)=i | O(1:T))% xi(i,j,t) = Pr(X(t)=i, X(t+1)=j | O(1:T)) t <= T-1if nargin < 4, filter_only = 0; endT = size(obslik, 2);Q = length(prior);scale = ones(1,T);loglik = 0;alpha = zeros(Q,T); gamma = zeros(Q,T);xi = zeros(Q,Q,T-1);t = 1;alpha(:,1) = prior(:) .* obslik(:,t);[alpha(:,t), scale(t)] = normalise(alpha(:,t));transmat2 = transmat';for t=2:T [alpha(:,t),scale(t)] = normalise((transmat2 * alpha(:,t-1)) .* obslik(:,t)); if filter_only xi(:,:,t-1) = normalise((alpha(:,t-1) * obslik(:,t)') .* transmat); endendloglik = sum(log(scale));if filter_only gamma = alpha; return;endbeta = zeros(Q,T); % beta(i,t) = Pr(O(t+1:T) | X(t)=i)gamma = zeros(Q,T);beta(:,T) = ones(Q,1);gamma(:,T) = normalise(alpha(:,T) .* beta(:,T));t=T;for t=T-1:-1:1 b = beta(:,t+1) .* obslik(:,t+1); beta(:,t) = normalise((transmat * b)); gamma(:,t) = normalise(alpha(:,t) .* beta(:,t)); xi(:,:,t) = normalise((transmat .* (alpha(:,t) * b')));end
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -