亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? eigenvaluedecomposition.cs

?? C#下的矩陣計算方法,從Japack該過來的,已經試用過,很好用.
?? CS
?? 第 1 頁 / 共 2 頁
字號:
// ----------------------------------------------
// Lutz Roeder's Mapack for .NET, September 2000
// Adapted from Mapack for COM and Jama routines.
// http://www.aisto.com/roeder/dotnet
// ----------------------------------------------
namespace Mapack
{
	using System;

	/// <summary>
	/// Determines the eigenvalues and eigenvectors of a real square matrix.
	/// </summary>
	/// <remarks>
	/// If <c>A</c> is symmetric, then <c>A = V * D * V'</c> and <c>A = V * V'</c>
	/// where the eigenvalue matrix <c>D</c> is diagonal and the eigenvector matrix <c>V</c> is orthogonal.
	/// If <c>A</c> is not symmetric, the eigenvalue matrix <c>D</c> is block diagonal
	/// with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues,
	/// <c>lambda+i*mu</c>, in 2-by-2 blocks, <c>[lambda, mu; -mu, lambda]</c>.
	/// The columns of <c>V</c> represent the eigenvectors in the sense that <c>A * V = V * D</c>.
	/// The matrix V may be badly conditioned, or even singular, so the validity of the equation
	/// <c>A=V*D*inverse(V)</c> depends upon the condition of <c>V</c>.
	/// </remarks>
	public class EigenvalueDecomposition
	{
		private int n;           	// matrix dimension
		private double[] d, e; 		// storage of eigenvalues.
		private Matrix V; 			// storage of eigenvectors.
		private Matrix H;  			// storage of nonsymmetric Hessenberg form.
		private double[] ort;    	// storage for nonsymmetric algorithm.
		private double cdivr, cdivi;
		private bool symmetric;

		/// <summary>Construct an eigenvalue decomposition.</summary>
		public EigenvalueDecomposition(Matrix value)
		{
			if (value == null)
			{
				throw new ArgumentNullException("value");				
			}

			if (value.Rows != value.Columns) 
			{
				throw new ArgumentException("Matrix is not a square matrix.", "value");
			}
			
			n = value.Columns;
			V = new Matrix(n,n);
			d = new double[n];
			e = new double[n];
	
			// Check for symmetry.
			this.symmetric = value.Symmetric;
	
			if (this.symmetric)
			{
				for (int i = 0; i < n; i++)
				{
					for (int j = 0; j < n; j++)
					{
						V[i,j] = value[i,j];
					}
				}
		 
				// Tridiagonalize.
				this.tred2();

				// Diagonalize.
				this.tql2();
			} 
			else 
			{
				H = new Matrix(n,n);
				ort = new double[n];
					 
				for (int j = 0; j < n; j++)
				{
					for (int i = 0; i < n; i++)
					{
						H[i,j] = value[i,j];
					}
				}
		 
				// Reduce to Hessenberg form.
				this.orthes();
		 
				// Reduce Hessenberg to real Schur form.
				this.hqr2();
			}
		}
		
		private void tred2() 
		{
			// Symmetric Householder reduction to tridiagonal form.
			// This is derived from the Algol procedures tred2 by Bowdler, Martin, Reinsch, and Wilkinson, 
			// Handbook for Auto. Comp., Vol.ii-Linear Algebra, and the corresponding Fortran subroutine in EISPACK.
			for (int j = 0; j < n; j++)
				d[j] = V[n-1,j];
	
			// Householder reduction to tridiagonal form.
			for (int i = n-1; i > 0; i--) 
			{
				// Scale to avoid under/overflow.
				double scale = 0.0;
				double h = 0.0;
				for (int k = 0; k < i; k++)
					scale = scale + Math.Abs(d[k]);
				
				if (scale == 0.0) 
				{
					e[i] = d[i-1];
					for (int j = 0; j < i; j++) 
					{
						d[j] = V[i-1,j];
						V[i,j] = 0.0;
						V[j,i] = 0.0;
					}
				}
				else
				{
					// Generate Householder vector.
					for (int k = 0; k < i; k++) 
					{
						d[k] /= scale;
						h += d[k] * d[k];
					}
	
					double f = d[i-1];
					double g = Math.Sqrt(h);
					if (f > 0) g = -g;
	
					e[i] = scale * g;
					h = h - f * g;
					d[i-1] = f - g;
					for (int j = 0; j < i; j++)
						e[j] = 0.0;
		 
					// Apply similarity transformation to remaining columns.
					for (int j = 0; j < i; j++) 
					{
						f = d[j];
						V[j,i] = f;
						g = e[j] + V[j,j] * f;
						for (int k = j+1; k <= i-1; k++) 
						{
							g += V[k,j] * d[k];
							e[k] += V[k,j] * f;
						}
						e[j] = g;
					}
							
					f = 0.0;
					for (int j = 0; j < i; j++) 
					{
						e[j] /= h;
						f += e[j] * d[j];
					}
					
					double hh = f / (h + h);
					for (int j = 0; j < i; j++)
						e[j] -= hh * d[j];
	
					for (int j = 0; j < i; j++) 
					{
						f = d[j];
						g = e[j];
						for (int k = j; k <= i-1; k++)
							V[k,j] -= (f * e[k] + g * d[k]);
	
						d[j] = V[i-1,j];
						V[i,j] = 0.0;
					}
				}
				d[i] = h;
			}
		 
			// Accumulate transformations.
			for (int i = 0; i < n-1; i++) 
			{
				V[n-1,i] = V[i,i];
				V[i,i] = 1.0;
				double h = d[i+1];
				if (h != 0.0) 
				{
					for (int k = 0; k <= i; k++)
						d[k] = V[k,i+1] / h;
	
					for (int j = 0; j <= i; j++) 
					{
						double g = 0.0;
						for (int k = 0; k <= i; k++)
							g += V[k,i+1] * V[k,j];
						for (int k = 0; k <= i; k++)
							V[k,j] -= g * d[k];
					}
				}
		
				for (int k = 0; k <= i; k++)
					V[k,i+1] = 0.0;
			}
		
			for (int j = 0; j < n; j++) 
			{
				d[j] = V[n-1,j];
				V[n-1,j] = 0.0;
			}
				
			V[n-1,n-1] = 1.0;
			e[0] = 0.0;
		} 
		 
		private void tql2() 
		{
			// Symmetric tridiagonal QL algorithm.
			// This is derived from the Algol procedures tql2, by Bowdler, Martin, Reinsch, and Wilkinson, 
			// Handbook for Auto. Comp., Vol.ii-Linear Algebra, and the corresponding Fortran subroutine in EISPACK.
			for (int i = 1; i < n; i++)
				e[i-1] = e[i];
	
			e[n-1] = 0.0;
		 
			double f = 0.0;
			double tst1 = 0.0;
			double eps = Math.Pow(2.0,-52.0);
	
			for (int l = 0; l < n; l++) 
			{
				// Find small subdiagonal element.
				tst1 = Math.Max(tst1,Math.Abs(d[l]) + Math.Abs(e[l]));
				int m = l;
				while (m < n) 
				{
					if (Math.Abs(e[m]) <= eps*tst1)
						break;
					m++;
				}
		 
				// If m == l, d[l] is an eigenvalue, otherwise, iterate.
				if (m > l) 
				{
					int iter = 0;
					do 
					{
						iter = iter + 1;  // (Could check iteration count here.)
		 
						// Compute implicit shift
						double g = d[l];
						double p = (d[l+1] - g) / (2.0 * e[l]);
						double r = Hypotenuse(p,1.0);
						if (p < 0) 
						{
							r = -r;
						}
	
						d[l] = e[l] / (p + r);
						d[l+1] = e[l] * (p + r);
						double dl1 = d[l+1];
						double h = g - d[l];
						for (int i = l+2; i < n; i++) 
						{
							d[i] -= h;
						}

						f = f + h;
		 
						// Implicit QL transformation.
						p = d[m];
						double c = 1.0;
						double c2 = c;
						double c3 = c;
						double el1 = e[l+1];
						double s = 0.0;
						double s2 = 0.0;
						for (int i = m-1; i >= l; i--) 
						{
							c3 = c2;
							c2 = c;
							s2 = s;
							g = c * e[i];
							h = c * p;
							r = Hypotenuse(p,e[i]);
							e[i+1] = s * r;
							s = e[i] / r;
							c = p / r;
							p = c * d[i] - s * g;
							d[i+1] = h + s * (c * g + s * d[i]);
		 
							// Accumulate transformation.
							for (int k = 0; k < n; k++) 
							{
								h = V[k,i+1];
								V[k,i+1] = s * V[k,i] + c * h;
								V[k,i] = c * V[k,i] - s * h;
							}
						}
							
						p = -s * s2 * c3 * el1 * e[l] / dl1;
						e[l] = s * p;
						d[l] = c * p;
		 
						// Check for convergence.
					} 
					while (Math.Abs(e[l]) > eps*tst1);
				}
				d[l] = d[l] + f;
				e[l] = 0.0;
			}
			 
			// Sort eigenvalues and corresponding vectors.
			for (int i = 0; i < n-1; i++) 
			{
				int k = i;
				double p = d[i];
				for (int j = i+1; j < n; j++) 
				{
					if (d[j] < p) 
					{
						k = j;
						p = d[j];
					}
				}
					 
				if (k != i) 
				{
					d[k] = d[i];
					d[i] = p;
					for (int j = 0; j < n; j++) 
					{
						p = V[j,i];
						V[j,i] = V[j,k];
						V[j,k] = p;
					}
				}
			}
		}
		 
		private void orthes() 
		{
			// Nonsymmetric reduction to Hessenberg form.
			// This is derived from the Algol procedures orthes and ortran, by Martin and Wilkinson, 
			// Handbook for Auto. Comp., Vol.ii-Linear Algebra, and the corresponding Fortran subroutines in EISPACK.
			int low = 0;
			int high = n-1;
		 
			for (int m = low+1; m <= high-1; m++) 
			{
				// Scale column.
		 
				double scale = 0.0;
				for (int i = m; i <= high; i++)
					scale = scale + Math.Abs(H[i,m-1]);
	
				if (scale != 0.0) 
				{
					// Compute Householder transformation.
					double h = 0.0;
					for (int i = high; i >= m; i--) 
					{
						ort[i] = H[i,m-1]/scale;
						h += ort[i] * ort[i];
					}
						
					double g = Math.Sqrt(h);
					if (ort[m] > 0) g = -g;
	
					h = h - ort[m] * g;
					ort[m] = ort[m] - g;
		 
					// Apply Householder similarity transformation
					// H = (I - u * u' / h) * H * (I - u * u') / h)
					for (int j = m; j < n; j++) 
					{
						double f = 0.0;
						for (int i = high; i >= m; i--) 
							f += ort[i]*H[i,j];
	
						f = f/h;
						for (int i = m; i <= high; i++)
							H[i,j] -= f*ort[i];
					}
		 
					for (int i = 0; i <= high; i++) 
					{
						double f = 0.0;
						for (int j = high; j >= m; j--)
							f += ort[j]*H[i,j];
	
						f = f/h;
						for (int j = m; j <= high; j++)
							H[i,j] -= f*ort[j];
					}
	
					ort[m] = scale*ort[m];
					H[m,m-1] = scale*g;
				}
			}
		 
			// Accumulate transformations (Algol's ortran).
			for (int i = 0; i < n; i++)
				for (int j = 0; j < n; j++)
					V[i,j] = (i == j ? 1.0 : 0.0);
	
			for (int m = high-1; m >= low+1; m--) 
			{
				if (H[m,m-1] != 0.0) 
				{
					for (int i = m+1; i <= high; i++)
						ort[i] = H[i,m-1];
	
					for (int j = m; j <= high; j++) 
					{
						double g = 0.0;
						for (int i = m; i <= high; i++)
							g += ort[i] * V[i,j];
	
						// Double division avoids possible underflow.
						g = (g / ort[m]) / H[m,m-1];
						for (int i = m; i <= high; i++)
							V[i,j] += g * ort[i];
					}
				}
			}
		}
		 
		private void cdiv(double xr, double xi, double yr, double yi)
		{
			// Complex scalar division.
			double r;
			double d;
			if (Math.Abs(yr) > Math.Abs(yi)) 
			{
				r = yi/yr;
				d = yr + r*yi;
				cdivr = (xr + r*xi)/d;
				cdivi = (xi - r*xr)/d;
			} 
			else 
			{
				r = yr/yi;
				d = yi + r*yr;
				cdivr = (r*xr + xi)/d;
				cdivi = (r*xi - xr)/d;
			}
		}

		private void hqr2() 
		{
			// Nonsymmetric reduction from Hessenberg to real Schur form.   
			// This is derived from the Algol procedure hqr2, by Martin and Wilkinson, Handbook for Auto. Comp.,
			// Vol.ii-Linear Algebra, and the corresponding  Fortran subroutine in EISPACK.
			int nn = this.n;
			int n = nn-1;
			int low = 0;
			int high = nn-1;
			double eps = Math.Pow(2.0,-52.0);
			double exshift = 0.0;
			double p = 0;
			double q = 0;
			double r = 0;
			double s = 0;
			double z = 0;
			double t;
			double w;
			double x;
			double y;
		 
			// Store roots isolated by balanc and compute matrix norm
			double norm = 0.0;
			for (int i = 0; i < nn; i++) 
			{
				if (i < low | i > high) 
				{
					d[i] = H[i,i];
					e[i] = 0.0;
				}
					
				for (int j = Math.Max(i-1,0); j < nn; j++)
					norm = norm + Math.Abs(H[i,j]);
			}
		 

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
久久久不卡影院| 日本美女一区二区三区| 成人免费va视频| 国产精品初高中害羞小美女文| 国产mv日韩mv欧美| 亚洲线精品一区二区三区| 欧美人妖巨大在线| 国产剧情一区二区| 亚洲小少妇裸体bbw| 久久美女艺术照精彩视频福利播放 | 94色蜜桃网一区二区三区| 亚洲综合精品自拍| 欧美大片拔萝卜| 99re热视频精品| 蜜桃视频一区二区三区在线观看| 国产欧美一区二区三区在线看蜜臀| 色综合久久中文综合久久牛| 精品一区二区三区免费观看| 亚洲视频在线一区| 久久精品水蜜桃av综合天堂| fc2成人免费人成在线观看播放 | 国产精品久久久久久久久图文区 | 婷婷丁香激情综合| 久久日韩粉嫩一区二区三区| 欧美三级乱人伦电影| 成人午夜激情片| 免播放器亚洲一区| 亚洲综合免费观看高清完整版在线| 欧美精品一区男女天堂| 69堂亚洲精品首页| 在线观看免费亚洲| 一本大道久久a久久精二百| 国产在线精品免费av| 日本系列欧美系列| 亚洲国产日韩a在线播放| 亚洲欧洲99久久| 国产欧美一区二区精品性色超碰| 欧美xxxx在线观看| 欧美一区二区三级| 欧美精品日韩综合在线| 色综合欧美在线| 色综合一个色综合亚洲| 国产综合久久久久久鬼色| 捆绑紧缚一区二区三区视频| 天天影视网天天综合色在线播放| 亚洲精品国产无天堂网2021| 亚洲视频香蕉人妖| 日韩av一二三| 五月婷婷久久综合| 天堂va蜜桃一区二区三区| 亚洲午夜久久久久久久久久久| 一区在线中文字幕| 亚洲欧美日韩中文播放| 亚洲欧美国产高清| 一区二区三区四区在线播放| 亚洲一二三区在线观看| 香蕉久久一区二区不卡无毒影院| 亚洲h精品动漫在线观看| 天天综合网 天天综合色| 免费观看一级欧美片| 精品一区二区免费看| 福利一区二区在线| 国产美女一区二区三区| 成人免费视频视频在线观看免费 | 久久精品噜噜噜成人av农村| 婷婷六月综合亚洲| 国产一区高清在线| 高清在线观看日韩| 92精品国产成人观看免费| 欧美曰成人黄网| 欧美日本一区二区三区四区| 日韩久久免费av| 日本一区二区三级电影在线观看 | 美女视频网站黄色亚洲| 久久精品国产色蜜蜜麻豆| 91婷婷韩国欧美一区二区| 欧美三级韩国三级日本一级| 日韩免费高清av| 国产精品色呦呦| 亚洲国产精品久久不卡毛片| 亚洲大片一区二区三区| 国产在线一区二区综合免费视频| 成人久久视频在线观看| 欧美视频一二三区| 久久久九九九九| 亚洲一区视频在线| 国产在线视频不卡二| 色噜噜狠狠一区二区三区果冻| 欧美美女一区二区| 国产精品嫩草影院av蜜臀| 午夜激情综合网| 成人黄色小视频在线观看| 欧美一区二区在线看| 久久精品欧美一区二区三区不卡 | 亚洲人123区| 91丨porny丨首页| 3d动漫精品啪啪| 亚洲欧美色综合| 蜜臀久久99精品久久久画质超高清| 国精品**一区二区三区在线蜜桃| 波多野结衣在线一区| 91精品国产综合久久国产大片| 亚洲精品高清在线| 成人黄色小视频| 欧美变态tickle挠乳网站| 一区二区三区自拍| 成人激情开心网| 国产日韩欧美精品在线| 麻豆成人av在线| 91精品国产全国免费观看| 亚洲制服欧美中文字幕中文字幕| av网站免费线看精品| 久久欧美中文字幕| 久久国产欧美日韩精品| 91精品国产色综合久久不卡蜜臀 | 精品视频色一区| 亚洲美女免费视频| 99在线精品一区二区三区| 国产日产亚洲精品系列| 国内精品写真在线观看| 欧美一区二区不卡视频| 日韩制服丝袜av| av中文字幕一区| 国产欧美日韩中文久久| 国产高清一区日本| 久久精品欧美一区二区三区不卡 | 色琪琪一区二区三区亚洲区| 日本一区二区视频在线| 国模娜娜一区二区三区| www精品美女久久久tv| 免费在线看成人av| 精品国产电影一区二区| 国产毛片精品一区| 久久精品人人爽人人爽| 白白色 亚洲乱淫| 日韩一区欧美小说| 欧美性做爰猛烈叫床潮| 午夜精品aaa| 精品99999| 高清在线不卡av| 国产精品传媒视频| 99精品视频在线观看免费| 亚洲乱码日产精品bd| 91在线观看污| 亚洲一区自拍偷拍| 欧美岛国在线观看| 国产69精品一区二区亚洲孕妇| 久久天天做天天爱综合色| 激情深爱一区二区| 国产精品久久久久久福利一牛影视| 91蜜桃在线免费视频| 天天色综合天天| 欧美激情一区二区三区蜜桃视频| 99re这里只有精品首页| 亚洲成人一区二区| 国产亚洲欧美一级| 激情久久五月天| 欧美一级夜夜爽| 国内精品免费在线观看| 亚洲青青青在线视频| 欧美一区欧美二区| 成人黄色小视频| 日本成人中文字幕| 国产精品久久久久久久久快鸭 | 蜜桃av噜噜一区二区三区小说| 精品成人一区二区| 在线精品亚洲一区二区不卡| 加勒比av一区二区| 亚洲午夜电影在线观看| 中文字幕av一区二区三区免费看| 欧美色电影在线| 成人综合激情网| 六月丁香婷婷色狠狠久久| 亚洲丝袜制服诱惑| 久久综合久久综合亚洲| 欧美影院午夜播放| 国产白丝精品91爽爽久久| 视频在线观看一区| 亚洲精品欧美在线| 日韩精品国产欧美| 国产精品不卡视频| 国产视频不卡一区| 日韩亚洲欧美中文三级| 在线欧美小视频| 91在线丨porny丨国产| 久久er99热精品一区二区| 一区二区三区精品视频| 中文字幕视频一区二区三区久| 欧美精品一区二区在线播放| 精品视频一区二区不卡| 不卡大黄网站免费看| 免费成人在线观看视频| 五月天一区二区三区| 中文字幕制服丝袜成人av| 精品国产免费一区二区三区四区| 欧美喷潮久久久xxxxx| 91久久精品一区二区| 色偷偷久久一区二区三区| 波多野结衣一区二区三区 | 91精品综合久久久久久|