亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? pa 765 logistic regression.mht

?? 這是博弈論算法全集第六部分:局面描述,其它算法將陸續(xù)推出.以便與大家共享
?? MHT
?? 第 1 頁 / 共 5 頁
字號(hào):
From: <由 Microsoft Internet Explorer 5 保存>
Subject: PA 765: Logistic Regression
Date: Sun, 20 Aug 2000 17:11:19 +0800
MIME-Version: 1.0
Content-Type: multipart/related;
	boundary="----=_NextPart_000_0000_01C00AC9.A89C6560";
	type="text/html"
X-MimeOLE: Produced By Microsoft MimeOLE V5.00.2615.200

This is a multi-part message in MIME format.

------=_NextPart_000_0000_01C00AC9.A89C6560
Content-Type: text/html;
	charset="gb2312"
Content-Transfer-Encoding: quoted-printable
Content-Location: http://www2.chass.ncsu.edu/garson/pa765/logistic.htm

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD><TITLE>PA 765: Logistic Regression</TITLE>
<META content=3D"text/html; charset=3Dgb2312" http-equiv=3DContent-Type>
<META content=3D"MSHTML 5.00.2614.3500" name=3DGENERATOR></HEAD>
<BODY bgColor=3Dwhite><!--HEADER BAR FOR PA765-->
<CENTER>
<SCRIPT language=3DJavascript>
<!--
//Create array of nav bar "on" images
if (document.images) {
            nav0 =3D new Image();
            nav0.src =3D "redbar2b.jpg";
	nav1 =3D new Image();
	nav1.src =3D "nav1on.jpg";
	nav2 =3D new Image();
	nav2.src =3D "nav2on.jpg";
	nav3 =3D new Image();
	nav3.src =3D "nav3on.jpg";
	nav4 =3D new Image();
	nav4.src =3D "nav4on.jpg";
	nav5 =3D new Image();
	nav5.src =3D "nav5on.jpg";
            nav99=3D new Image();
            nav99.src =3D "redbar2b.jpg";
}

//Create array of nav bar "off" images
if (document.images) {
            nav0off =3D new Image();
            nav0off.src =3D "redbar2.jpg";
	nav1off =3D new Image();
	nav1off.src =3D "nav1.jpg";
	nav2off =3D new Image();
	nav2off.src =3D "nav2.jpg";
	nav3off =3D new Image();
	nav3off.src =3D "nav3.jpg";
	nav4off =3D new Image();
	nav4off.src =3D "nav4.jpg";
	nav5off =3D new Image();
	nav5off.src =3D "nav5.jpg";
            nav99off =3D new Image();
            nav99off.src =3D "redbar2.jpg";
}
//function to activate images

function imgOn(imgName) {
	if (document.images) {
		document[imgName].src =3D eval(imgName + ".src");
	}
}

//functions to deactivate images
function imgOff(imgName) {
	if (document.images) {
		document[imgName].src =3D "white.jpg";
	}
}

function navOff(navName) {
	if (document.images) {
		document[navName].src =3D eval(navName + "off.src");
	}
}

// -->
</SCRIPT>
<!--THE NEXT SECTION HAS THE FIVE NAVIGATOR BAR CHOICES WITH TWO BLANK =
IMAGES ON THE ENDS TO EXTEND THE NAVIGATOR BAR LINE ON EITHER SIDE-->
<TABLE border=3D0 cellPadding=3D0 cellSpacing=3D0 width=3D620>
  <TBODY>
  <TR>
    <TD><A href=3D"http://www2.chass.ncsu.edu/garson/pa765/index.shtml"=20
      onmouseout=3D"navOff('nav0')" onmouseover=3D"imgOn('nav0')" ;><IMG =

      alt=3D" [Home] " border=3D0 height=3D25 name=3Dnav0=20
      src=3D"http://www2.chass.ncsu.edu/garson/pa765/redbar2.jpg" =
width=3D37></A> <A=20
      href=3D"http://www2.chass.ncsu.edu/garson/pa765/pa765syl.htm"=20
      onmouseout=3D"navOff('nav1')" onmouseover=3D"imgOn('nav1')" ;><IMG =

      alt=3D" [Syllabus] " border=3D0 height=3D25 name=3Dnav1=20
      src=3D"http://www2.chass.ncsu.edu/garson/pa765/nav1.jpg" =
width=3D100></A> <A=20
      href=3D"http://www2.chass.ncsu.edu/garson/pa765/statnote.htm"=20
      onmouseout=3D"navOff('nav2')" onmouseover=3D"imgOn('nav2')" ;><IMG =

      alt=3D" [Statnotes] " border=3D0 height=3D25 name=3Dnav2=20
      src=3D"http://www2.chass.ncsu.edu/garson/pa765/nav2.jpg" =
width=3D100></A> <A=20
      href=3D"http://www2.chass.ncsu.edu/garson/pa765/links.htm"=20
      onmouseout=3D"navOff('nav3')" onmouseover=3D"imgOn('nav3')" ;><IMG =

      alt=3D" [Links] " border=3D0 height=3D25 name=3Dnav3=20
      src=3D"http://www2.chass.ncsu.edu/garson/pa765/nav3.jpg" =
width=3D100></A> <A=20
      href=3D"http://hcl.chass.ncsu.edu/ssl/ssl.htm" =
onmouseout=3D"navOff('nav4')"=20
      onmouseover=3D"imgOn('nav4')" ;><IMG alt=3D" [Lab] " border=3D0 =
height=3D25=20
      name=3Dnav4 =
src=3D"http://www2.chass.ncsu.edu/garson/pa765/nav4.jpg"=20
      width=3D100></A> <A=20
      href=3D"http://www2.chass.ncsu.edu/garson/pa765/garson.htm"=20
      onmouseout=3D"navOff('nav5')" onmouseover=3D"imgOn('nav5')" ;><IMG =

      alt=3D" [Instructor] " border=3D0 height=3D25 name=3Dnav5=20
      src=3D"http://www2.chass.ncsu.edu/garson/pa765/nav5.jpg" =
width=3D100></A> <A=20
      href=3D"http://www2.chass.ncsu.edu/garson/pa765/index.shtml"=20
      onmouseout=3D"navOff('nav99')" onmouseover=3D"imgOn('nav99')" =
;><IMG=20
      alt=3D" [Home] " border=3D0 height=3D25 name=3Dnav99=20
      src=3D"http://www2.chass.ncsu.edu/garson/pa765/redbar2.jpg" =
width=3D37></A>=20
      <BR></TD></TR></TBODY></TABLE></CENTER><!--END OF HEADER BAR FOR =
PA765-->
<CENTER>
<H1>Logistic Regression</H1></CENTER>
<P><BR>
<H2>Overview</H2><I>Binomial (or binary) logistic regression</I> is a =
form of=20
regression which is used when the dependent is a dichotomy and the =
independents=20
are continuous variables, categorical variables, or both. <I>Multinomial =

logistic regression</I> exists to handle the case of dependents with =
more=20
classes. Logistic regression applies maximum likelihood estimation after =

transforming the dependent into a logit variable (the natural log of the =
odds of=20
the dependent occurring or not). In this way, logistic regression =
estimates the=20
probability of a certain event occurring. Note that logistic regression=20
calculates changes in the log odds of the dependent, not changes in the=20
dependent itself as OLS regression does.=20
<P>Logistic regression has many analogies to OLS regression: logit =
coefficients=20
correspond to b coefficients in the logistic regression equation, the=20
standardized logit coefficients correspond to beta weights, and a pseudo =

R<SUP>2</SUP> statistic is available to summarize the strength of the=20
relationship. Unlike OLS regression, however, logistic regression does =
not=20
assume linearity of relationship between the independent variables and =
the=20
dependent, does not require normally distributed variables, does not =
assume=20
homoscedasticity, and in general has less stringent requirements. The =
success of=20
the logistic regression can be assessed by looking at the classification =
table,=20
showing correct and incorrect classifications of the dichotomous, =
ordinal, or=20
polytomous dependent. Also, goodness-of-fit tests are available as =
indicators of=20
success as is the Wald statistic and other tests of the model's =
significance.=20
<P>In SPSS 10, binomial logistic regression is under Analyze - =
Regression -=20
Binary Logistic, and the multinomial version is under Analyze - =
Regression -=20
Multinomial Logistic. The GENLOG and LOGLINEAR procedures in SPSS can =
also fit=20
logit models when all variables are categorical.=20
<P>
<H2>Key Terms and Concepts</H2><A=20
href=3D"http://www2.chass.ncsu.edu/garson/pa765/logit.htm">Logit =
regression</A>=20
has numerically identical results to logistic regression, but some =
computer=20
programs offer both, often with different output options. Logistic =
regression=20
has become more popular among social scientists.=20
<UL><A name=3Ddesign></A>
  <LI><B>Design variables</B> are nominal or ordinal independents =
entered as=20
  dummy variables. SPSS will convert categorical variables to dummies=20
  automatically by leaving out the last category. Researchers may prefer =
to=20
  create dummy variables manually so as to control which category is =
omitted and=20
  thus becomes the reference category. For more on the selection of =
dummy=20
  variables, click <A=20
  =
href=3D"http://www2.chass.ncsu.edu/garson/pa765/regress.htm#dummy">here</=
A>.=20
  <P></P>
  <LI><B>Covariates</B> are interval independents.=20
  <P><A name=3Dodds></A></P>
  <LI><B>Odds, odds ratios, second-order odds ratios, partial odds =
ratios, and=20
  logits</B> are all important basic terms in logistic regression. They =
are=20
  defined in the separate section on <A=20
  href=3D"http://www2.chass.ncsu.edu/garson/pa765/logit.htm">log-linear=20
  analysis.</A> Those new to the subject should click on <A=20
  href=3D"http://www2.chass.ncsu.edu/garson/pa765/logit.htm">log-linear=20
  analysis.</A> before proceeding with the remainder of this section so =
that=20
  terms such as "logits" are understood.=20
  <P><A name=3Dlcoeff></A></P>
  <LI><B>Logit coefficients</B>, also called unstandardized <I>logistic=20
  regression coefficients</I> or <I>effect coefficients</I>, correspond =
to the b=20
  (unstandardized regression) coefficients in ordinary least squares =
(OLS)=20
  regression, and are used in the logistic regression equation to =
estimate=20
  (predict) the odds that the dependent equals 1 (binomial logistic =
regression)=20
  or that the dependent equals its highest/last value (multinomial =
logistic=20
  regression). For the dichotomous case, if the logit for a given =
independent=20
  variable is b<SUB>1</SUB>, then a unit increase in the independent =
variable is=20
  associated with b<SUB>1</SUB> unit increase in the log odds of the =
dependent=20
  variable (the natural log of the probability that the dependent =3D 1 =
divided by=20
  the probability that the dependent =3D 0). In multinomial logistic =
analysis,=20
  where the dependent may have more than the usual 0-or-1 values, the =
comparison=20
  is always with the last value rather than with the value of 1. Note =
that OLS=20
  had an identity link function while logistic regression has a logit =
link=20
  function (that is, logistic regression calculates changes in the log =
odds of=20
  the dependent, not changes in the dependent itself as OLS regression =
does).=20
  <P>The probability that dependent event y=3D1 is a function of the =
logit=20
  coefficients. For instance, let y=3D0 or y=3D1 and let x<SUB>1</SUB>,=20
  x<SUB>2</SUB>, and x<SUB>3</SUB> be continuous independent variables =
for the=20
  logistic model y =3D b<SUB>0</SUB> + b<SUB>1</SUB>x<SUB>1</SUB> +=20
  b<SUB>2</SUB>x<SUB>2</SUB> + b<SUB>3</SUB>x<SUB>3</SUB>. The estimate =
of=20
  p(y=3D1) is the natural logarithm e to the power of a term which is =
the logistic=20
  regression equation. (Note that SPSS will use all the logit =
coefficients in=20
  calculating p, whether they are significant or not. To avoid this, =
re-run the=20
  logistic model dropping non-significant independents.)=20
  <P>In SPSS output, the logit coefficients are labeled B.=20
  <P></P>
  <LI><B>Interpreting the logit coefficient</B>=20
  <UL>
    <P>
    <LI><B>Odds ratio</B>. The logit can be converted easily into a =
statement=20
    about <I>odds ratio</I> of the dependent rather than log odds simply =
by=20
    using the exponential function (raising the natural log to the =
b<SUB>1</SUB>=20
    power). For instance, if the logit b<SUB>1</SUB> =3D 2.303, then its =
log odds=20
    ratio (the exponential function, e<SUP>b</SUP>) is 10 and we may say =
that=20
    when the independent variable increases one unit, the odds that the=20
    dependent =3D 1 increase by a factor of 10, when other variables are =

    controlled. Thus the odds ratio can be used to compare the relative=20
    importance of the independent variables through statements along the =
lines,=20
    "The effect of x<SUB>1</SUB> on the predicted odds that y=3D1 is =
equivalent to=20
    an increase (or decrease) of (odds ratio) units of y." Similar =
statements=20
    can be made for each of the independent variables. The ratio of odds =
ratios=20
    of the independents is the ratio of relative importance of the =
independent=20
    variables in terms of effect on the dependent variable. Note =
standardized=20
    logit coefficients may also be used, as discussed below.=20
    <P></P>
    <LI><B>Percent increase in odds</B>. Another way of saying the same =
thing is=20
    to transform the logit coefficient by 100(e<SUP>b</SUP> - 1), where =
b is the=20
    logit coefficient, then express the result as a percentage. To take =
an=20
    example given by Allison (1999: 188), for a group of male professors =
the=20
    logit coefficient for "number of articles published" is .0737, where =
the=20
    dependent is being promoted. Rounded to the nearest hundredth, this=20
    transforms to .08. Therefore one may say, "each additional article =
yields an=20
    increase in the odds of promotion of about 8%." </LI></UL>
  <P><A name=3Dconfidence></A><A name=3Dase></A></P>
  <LI><B>Confidence interval for the logistic regression =
coefficient</B>. The=20
  confidence interval around the logistic regression coefficient is plus =
or=20

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美性三三影院| 亚洲尤物在线视频观看| 欧美xxxxx裸体时装秀| 欧美日韩mp4| 欧美老女人在线| 欧美精品在线观看一区二区| 欧美日精品一区视频| 欧美高清视频www夜色资源网| 欧美人与z0zoxxxx视频| 欧美日韩国产系列| 欧美老肥妇做.爰bbww| 欧美浪妇xxxx高跟鞋交| 日韩一区二区免费电影| 精品久久五月天| 国产日韩高清在线| 亚洲少妇屁股交4| 亚洲一区在线电影| 日韩电影一区二区三区| 玖玖九九国产精品| 国产精品正在播放| aaa欧美大片| 欧美日韩一区二区三区四区| 777久久久精品| 久久久亚洲精华液精华液精华液| 国产日本欧洲亚洲| 亚洲另类中文字| 日韩二区在线观看| 国产一区二区成人久久免费影院| 成人丝袜高跟foot| 欧美亚洲一区二区三区四区| 欧美一个色资源| 国产精品区一区二区三| 亚洲综合在线免费观看| 日韩国产欧美在线观看| 国产91丝袜在线播放| 色先锋久久av资源部| 欧美一级视频精品观看| 欧美高清在线一区| 亚洲第一成人在线| 韩国成人精品a∨在线观看| 91色综合久久久久婷婷| 3d动漫精品啪啪一区二区竹菊 | 欧美日韩www| 久久久激情视频| 亚洲午夜在线视频| 国产一区二区三区久久久| 色网综合在线观看| 精品国产乱码久久久久久夜甘婷婷| 国产欧美精品一区aⅴ影院| 亚洲午夜三级在线| 国产.欧美.日韩| 欧美吞精做爰啪啪高潮| 久久精品在这里| 偷拍自拍另类欧美| 成人h精品动漫一区二区三区| 欧美丰满少妇xxxbbb| 国产精品久久久久久久久果冻传媒| 日韩精品一二三区| 92国产精品观看| 精品国产精品网麻豆系列| 亚洲激情成人在线| 国产91精品精华液一区二区三区 | 久久久亚洲国产美女国产盗摄| 亚洲另类春色校园小说| 国产酒店精品激情| 欧美日韩第一区日日骚| 中文字幕一区三区| 久久91精品国产91久久小草| 欧美在线短视频| 国产精品久久夜| 狠狠色狠狠色综合日日91app| 欧美私模裸体表演在线观看| 国产精品视频麻豆| 九一九一国产精品| 欧美精品一卡二卡| 亚洲六月丁香色婷婷综合久久| 国产经典欧美精品| 精品国产乱码久久久久久夜甘婷婷| 亚洲大片免费看| 色天天综合色天天久久| 国产精品美女久久久久aⅴ国产馆 国产精品美女久久久久av爽李琼 国产精品美女久久久久高潮 | 欧美人伦禁忌dvd放荡欲情| 国产精品美女久久久久久久| 国产一区二区精品久久| 日韩视频免费直播| 日韩在线一区二区三区| 欧美三级日本三级少妇99| 亚洲精品美国一| 色婷婷久久久亚洲一区二区三区| 国产欧美一区二区精品秋霞影院| 九一久久久久久| 日韩久久久久久| 蜜臀va亚洲va欧美va天堂| 欧美男生操女生| 亚洲va天堂va国产va久| 欧美专区日韩专区| 亚洲综合免费观看高清完整版 | 欧美久久婷婷综合色| 亚洲国产综合人成综合网站| 欧美中文字幕一区| 亚洲自拍都市欧美小说| 亚洲美女淫视频| 欧美日韩电影在线| 亚洲精品视频在线观看网站| 成人av手机在线观看| 国产精品蜜臀在线观看| 国产69精品久久777的优势| 国产色综合一区| 国产xxx精品视频大全| 中文字幕av一区 二区| 北条麻妃一区二区三区| 国产精品国产馆在线真实露脸| 国产91丝袜在线18| 日韩毛片精品高清免费| 91极品视觉盛宴| 日韩制服丝袜av| 精品国产一区久久| 高清视频一区二区| 亚洲人成在线观看一区二区| 在线视频国内自拍亚洲视频| 日一区二区三区| 精品捆绑美女sm三区| 国产v综合v亚洲欧| 亚洲精品成人在线| 91精品国产综合久久福利| 久久国产婷婷国产香蕉| 久久精品一区蜜桃臀影院| av在线播放成人| 亚洲午夜精品在线| 欧美大片顶级少妇| 成人国产一区二区三区精品| 亚洲夂夂婷婷色拍ww47| 欧美成人国产一区二区| 国产成人日日夜夜| 亚洲黄色在线视频| 日韩一区二区三区免费观看| 国产成人99久久亚洲综合精品| 亚洲人成在线播放网站岛国| 91精品国产色综合久久ai换脸| 国产成人午夜高潮毛片| 亚洲永久免费av| 久久久精品tv| 在线观看日产精品| 激情av综合网| 亚洲一线二线三线久久久| 精品免费99久久| 91国模大尺度私拍在线视频| 久久精品久久综合| 亚洲精品综合在线| 日韩美女视频在线| 色婷婷综合久色| 韩国成人福利片在线播放| 亚洲免费大片在线观看| 精品国产免费久久| 在线日韩国产精品| 国产精品自拍三区| 午夜精品久久久久久久 | 亚洲欧美色综合| 精品毛片乱码1区2区3区| 日本精品视频一区二区三区| 精品一区二区三区香蕉蜜桃| 一区二区三区日韩精品| ww久久中文字幕| 欧美日韩免费观看一区三区| 成人美女视频在线观看| 久久精品国产亚洲高清剧情介绍 | 日韩欧美中文字幕公布| 91蝌蚪porny九色| 国产一区二区三区综合| 一区二区三区精密机械公司| 欧美极品少妇xxxxⅹ高跟鞋| 91精品蜜臀在线一区尤物| 不卡欧美aaaaa| 国产一区二区三区av电影| 五月激情综合色| 亚洲欧美日韩成人高清在线一区| 精品久久久久久久久久久院品网| 欧美日韩一区二区电影| 91色|porny| 成人福利视频网站| 精品一区二区三区久久久| 午夜av电影一区| 亚洲制服丝袜av| 亚洲男人的天堂在线aⅴ视频 | 六月婷婷色综合| 亚洲国产精品久久久男人的天堂 | 久久精品国产精品亚洲综合| 亚洲一区二区欧美日韩 | 国产999精品久久久久久绿帽| 蜜乳av一区二区| 日本最新不卡在线| 亚洲一区在线观看视频| 一区二区三区四区在线播放 | 国产美女精品人人做人人爽| 日韩影视精彩在线| 天堂成人免费av电影一区| 亚洲午夜一区二区三区| 亚洲日本丝袜连裤袜办公室| 国产精品夫妻自拍| 中文字幕日韩欧美一区二区三区|