亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? tfdemo3.m

?? matlab里面有用的一個時頻工具箱
?? M
字號:
%TFDEMO3 Demonstration on linear time-frequency representations.  	 
%	Time-Frequency Toolbox demonstration.
%
%	See also TFDEMO.

%	O. Lemoine - May 1996. 
%	Copyright (c) CNRS.

clc; zoom on; 
echo on;

% The Short-Time Fourier Transform
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% In order to introduce time-dependency in the Fourier transform, a simple
% and intuitive solution consists in pre-windowing the signal x(u) around a
% particular time t, calculating its Fourier transform, and doing that for
% each time instant t. The resulting transform is called the Short-Time 
% Fourier Transform (STFT).
%
% Let us have a look at the result obtained by applying the STFT on a
% speech signal. The signal we consider contains the word 'GABOR' recorded 
% on 338 points with a sampling frequency of 1 kHz (with respect to the 
% Shannon criterion).

echo off
DirectoryStr='';
while (exist([DirectoryStr 'gabor.mat'])==0),
 fprintf('I can''t find %s\n', [DirectoryStr 'gabor.mat']);
 DirectoryStr=input('name of the directory where gabor.mat is : ','s');
end;
eval(['load ' DirectoryStr 'gabor.mat']);
echo on

time=0:337; 
clf; subplot(211); plot(time,gabor); xlabel('Time [ms]'); grid

% Now let us have a look at the Fourier transform of it :

dsp=fftshift(abs(fft(gabor)).^2); subplot(212); 
freq=(-169:168)/338*1000; plot(freq,dsp); xlabel('Frequency [Hz]'); grid

% We can not say from this representation what part of the word is
% responsible for that peak around 140 Hz. 
%
% Press any key to continue...
 
pause; clc;
 
% Now if we look at the squared modulus of the STFT of this signal, 
% using a hamming analysis window of 85 points, we can see some interesting
% features (the time-frequency matrix is loaded from the MAT-file because 
% it takes a long time to be calculated ; we represent only the frequency 
% domain where the signal is present) :
		
clf; tfrsp(gabor,1:338,256,window(61,'hanning'),1); 
% contour(time,(0:127)/256*1000,log10(tfr)); grid
xlabel('Time [ms]'); ylabel('Frequency [Hz]'); 
title('Squared modulus of the STFT of the word GABOR');

% The first pattern in the time-frequency plane, located between 30ms and
% 60ms, and centered around 150Hz, corresponds to the first syllable
% 'GA'. The second pattern, located between 150ms and 250ms, corresponds to
% the last syllable 'BOR', and we can see that its mean frequency is
% decreasing from 140Hz to 110Hz with time. Harmonics corresponding to these
% two fondamental signals are also present at higher frequencies, but with a
% lower amplitude.
%
% Press any key to continue...
 
pause; clc;
 
% To illustrate the tradeoff which exists for the STFT between time and 
% frequency resolutions, whatever is the short time analysis window h, we 
% consider two extreme cases : 
% - the first one corresponds to a perfect time resolution : the analysis 
% window h(t) is chosen as a Dirac impulse :

sig=amgauss(128).*fmlin(128); h=1;
tfrstft(sig,1:128,128,h);

% The signal is perfectly localized in time (a section for a given 
% frequency of the squared modulus of the STFT corresponds exactly to the 
% squared modulus of the signal), but the frequency resolution is null.     
%
% Press any key to continue...
 
pause; 

% - the second is that of perfect frequency resolution , obtained with a
% constant window :

h=ones(127,1);
tfrstft(sig,1:128,128,h);

% Here the STFT reduces to the Fourier transform (except on the sides, 
% because of the finite length of h), and does not provides any time 
% resolution.  
%    
% Press any key to continue...
 
pause; clc

% To illustrate the influence of the shape and length of the analysis
% window h, we consider two transient signals having the same gaussian
% amplitude and constant frequency, with different arrival times :

sig=atoms(128,[45,.25,32,1;85,.25,32,1],0);

% Here is the result obtained with a Hamming analysis window of 65 
% points :

h=window(65,'hamming');
tfrstft(sig,1:128,128,h);

% The frequency-resolution is very good, but it is almost impossible to
% discriminate the two components in time. 
%    
% Press any key to continue...
 
pause; clc

% If we now consider a short Hamming window of 17 points,

h=window(17,'hamming');
tfrstft(sig,1:128,128,h);

% the frequency resolution is poorer, but the time-resolution is 
% sufficiently good to distinguish the two components. 
%    
% Press any key to continue...
 
pause; clc; clf

% The Gabor Representation 
%~~~~~~~~~~~~~~~~~~~~~~~~~~
% The reconstruction (synthesis) formula of the STFT given in the 
% discrete case defines the Gabor representation. Let us consider the 
% Gabor coefficients of a linear chirp of N1=256 points at the critical 
% sampling case, and for a gaussian window of Ng=33 points :

N1=256; Ng=33; Q=1; % degree of oversampling.
sig=fmlin(N1); g=window(Ng,'gauss'); g=g/norm(g);
[tfr,dgr,h]=tfrgabor(sig,16,Q,g);

% (tfrgabor generates as first output the squared modulus of the Gabor
% representation, as second output the complex Gabor representation, and 
% as third output the biorthonormal window). When we look at the
% biorthonormal window h,

plot(h); axis([1 256 -0.3 0.55]); grid; title('Biorthonormal window'); 

% we can see how "bristling" this function is. 
%    
% Press any key to continue...
 
pause; clc

% The corresponding Gabor decomposition contains all the information about 
% sig, but is not easy to interpret :

t=1:16; f=linspace(0,0.5,8); imagesc(t,f,tfr(1:8,:));  grid
xlabel('Time'); ylabel('Normalized frequency'); axis('xy'); 
title('Squared modulus of the Gabor coefficients');

% Press any key to continue...
 
pause;

% If we now consider a degree of oversampling of Q=4 (there are four times
% more Gabor coefficients than signal samples), the biorthogonal function is
% smoother (the bigger Q, the closer h from g),

Q=4; [tfr,dgr,h]=tfrgabor(sig,32,Q,g);
plot(h); title('Biorthonormal window'); axis([1 256 -0.01 0.09]); grid; 

% press any key to continue...
 
pause; 

% and the Gabor representation is much more readable :

t=1:32; f=linspace(0,0.5,16); imagesc(t,f,tfr(1:16,:)); axis('xy'); 
xlabel('Time'); ylabel('Normalized frequency');  grid
title('Squared modulus of the Gabor coefficients');

% Press any key to continue...
 
pause; clc; 

% From atomic decompositions to energy distributions
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% The spectrogram
%"""""""""""""""""
% If we consider the squared modulus of the STFT, we obtain a spectral
% energy density of the locally windowed signal x(u) h*(u-t), which 
% defines the spectrogram.
% To illustrate the resolution tradeoff of the spectrogram and its
% interference structure, we consider a two-component signal composed of 
% two parallel chirps :

sig=fmlin(128,0,0.4)+fmlin(128,0.1,0.5);
h1=window(23,'gauss'); figure(1); tfrsp(sig,1:128,128,h1);

h2=window(63,'gauss'); figure(2); tfrsp(sig,1:128,128,h2);

%print -deps EPS/At4fig2

% In these two cases, the signals sig1 and sig2 are not sufficiently 
% distant to have distinct terms in the time-frequency plane, whatever the 
% window length is. Consequently, interference terms are present, and 
% disturb the readability of the time-frequency representation. 
%
% Press any key to continue...
 
pause; clc; 

% If we consider more distant components,

sig=fmlin(128,0,0.3)+fmlin(128,0.2,0.5);
h1=window(23,'gauss'); figure(1); tfrsp(sig,1:128,128,h1);
h2=window(63,'gauss'); figure(2); tfrsp(sig,1:128,128,h2);

% the two auto-spectrograms do not overlap and no interference term
% appear. We can also see the effect of a short window (h1) and a long
% window (h2) on the time-frequency resolution. In the present case, the 
% long window h2 is preferable since as the frequency progression is not
% very fast, the quasi-stationary assumption will be correct over h2 (so 
% time resolution is not as important as frequency resolution in this case) 
% and the frequency resolution will be quite good ; whereas if the window 
% is short (h1), the time resolution will be good, which is not very useful, 
% and the frequency resolution will be poor.
%
% Press any key to continue...
 
pause; clc; close;

% The scalogram
%"""""""""""""""
% A similar distribution to the spectrogram can be defined in the wavelet
% case. The squared modulus of the continuous wavelet transform also 
% defines an energy distribution which is known as the scalogram.
% As for the wavelet transform, time and frequency resolutions of the
% scalogram are related via the Heisenberg-Gabor principle : time and
% frequency resolutions depend on the considered frequency. To illustrate
% this point, we represent the scalograms of two different signals. The
% M-file tfrscalo.m generates this representation. The chosen wavelet is a
% Morlet wavelet of 12 points. The first signal is a Dirac pulse at time
% t0=64 :

sig1=anapulse(128);
tfrscalo(sig1,1:128,6,0.05,0.45,64);

% This figure shows that the influence of the signal's behavior around 
% t=t0 is limited to a cone in the time-scale plane (which is more visible 
% if you choose the logarithmic scale is the menu) : it is "very" localized 
% around t0 for small scales (large frequencies), and less and less 
% localized as the scale increases (as the frequency decreases).
%
% Press any key to continue...
 
pause; clc; 

% The second signal is the sum of two sinusoids of different frequencies :

sig2=fmconst(128,.15)+fmconst(128,.35);
tfrscalo(sig2,1:128,6,0.05,0.45,128);
 
% Here again, we notice that the frequency resolution is clearly a function
% of the frequency : it increases with nu.
%
% Press any key to end this demonstration

pause;
echo off

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
免费高清在线一区| 国产69精品久久99不卡| 色94色欧美sute亚洲线路二| 国产午夜精品一区二区| 粉嫩aⅴ一区二区三区四区五区| 久久久综合视频| 大胆亚洲人体视频| 日韩理论在线观看| 欧美伊人久久大香线蕉综合69| 亚洲成a人片在线观看中文| 日韩亚洲欧美高清| 成人av第一页| 蜜桃视频第一区免费观看| 久久久久久久综合色一本| 免费高清在线视频一区·| 欧美日韩一区高清| 成人av资源站| 日韩高清国产一区在线| 亚洲国产精品成人久久综合一区| 91免费观看在线| 久久99国产精品久久| 欧美国产成人在线| 日韩一区二区免费在线电影| 91麻豆自制传媒国产之光| 久久se精品一区精品二区| 亚洲一区二区三区在线播放| 国产丝袜美腿一区二区三区| 欧美三区在线视频| 在线观看日韩精品| 91免费看片在线观看| 国产麻豆午夜三级精品| 免费观看久久久4p| 日本午夜一区二区| 日本美女视频一区二区| 亚洲精选视频在线| 夜夜爽夜夜爽精品视频| 亚洲欧洲日韩在线| 亚洲一区二区综合| 五月天激情综合| 日韩av中文在线观看| 丝袜脚交一区二区| 免费观看在线色综合| 亚洲精品中文字幕在线观看| 精品99999| 国产精品女人毛片| 亚洲综合免费观看高清在线观看| 中文字幕一区二区三区在线播放 | 中文字幕国产一区二区| 国产精品三级av| 亚洲一区影音先锋| 老司机一区二区| 成人免费不卡视频| 欧美日韩免费一区二区三区视频| 884aa四虎影成人精品一区| 日韩午夜在线播放| 亚洲综合网站在线观看| 久久国产麻豆精品| 福利电影一区二区三区| 欧美日韩精品一二三区| 久久久美女毛片| 美脚の诱脚舐め脚责91 | 全国精品久久少妇| 色欲综合视频天天天| 日韩精品一区二区三区四区视频| 精品99久久久久久| 自拍偷自拍亚洲精品播放| 亚洲在线观看免费| 91在线观看美女| 国产亚洲污的网站| 狠狠v欧美v日韩v亚洲ⅴ| 91高清视频在线| 国产精品福利在线播放| 国产综合色在线视频区| 欧美一区二区三区爱爱| 亚洲一区二区四区蜜桃| 日本久久精品电影| 一区二区三区四区在线播放| bt欧美亚洲午夜电影天堂| 中文字幕成人av| 99re热视频精品| 亚洲精品日日夜夜| 欧美三级午夜理伦三级中视频| 洋洋成人永久网站入口| 91国产丝袜在线播放| 午夜精品久久久| 日韩欧美一区二区视频| 国产精品一线二线三线精华| 2024国产精品| 成人动漫一区二区| 亚洲免费视频中文字幕| 制服丝袜亚洲色图| 国产夫妻精品视频| 亚洲高清视频的网址| 日韩欧美黄色影院| 国产精品自在在线| 最近日韩中文字幕| 99久久精品免费精品国产| 亚洲色图在线看| 精品少妇一区二区三区在线视频| 国产精品18久久久久久久久| 亚洲黄色在线视频| 日韩网站在线看片你懂的| 成人动漫中文字幕| 久久不见久久见免费视频7| 国产精品不卡一区二区三区| 3d动漫精品啪啪一区二区竹菊 | 亚洲成人www| 国产精品国产三级国产aⅴ无密码| 91香蕉视频mp4| 久久99精品国产| 日韩在线一区二区| 亚洲一区在线观看视频| 中文字幕av不卡| 国产精品视频看| 欧美xfplay| 欧美成人一区二区| 911国产精品| 在线成人av网站| 欧美视频中文字幕| 欧美图区在线视频| 欧美丰满嫩嫩电影| 这里只有精品电影| 日韩三级电影网址| 久久综合999| 国产日韩欧美激情| 日韩一区中文字幕| 亚洲国产aⅴ成人精品无吗| 日韩中文字幕麻豆| 免费在线成人网| 亚洲综合偷拍欧美一区色| 亚洲1区2区3区4区| 精品一区免费av| 99riav一区二区三区| 精品视频在线视频| 欧美不卡视频一区| 亚洲女爱视频在线| 蜜桃久久久久久| 99麻豆久久久国产精品免费| 欧美午夜不卡在线观看免费| 精品欧美一区二区在线观看| 久久久国产一区二区三区四区小说| 国产校园另类小说区| 亚洲国产精品影院| 国产成人免费视频精品含羞草妖精| 91亚洲永久精品| 久久亚洲欧美国产精品乐播 | 在线亚洲+欧美+日本专区| 欧美老女人第四色| 亚洲精品一二三四区| 岛国av在线一区| 久久久777精品电影网影网| 亚洲综合一二区| 一本大道av伊人久久综合| 日韩精品影音先锋| 日本少妇一区二区| 欧美日韩mp4| 三级一区在线视频先锋 | 国产一区二区伦理片| 欧美夫妻性生活| 蜜臀av一级做a爰片久久| 色屁屁一区二区| 久久综合九色综合97婷婷女人| 日韩va欧美va亚洲va久久| 欧美三级一区二区| 日韩激情中文字幕| 日韩一级大片在线| 粉嫩久久99精品久久久久久夜| 久久久国产午夜精品 | 国产成人精品亚洲777人妖| 欧美电视剧在线看免费| 国产东北露脸精品视频| 亚洲人成人一区二区在线观看| 色嗨嗨av一区二区三区| 全国精品久久少妇| 国产精品丝袜91| 欧美日韩成人激情| 久久91精品久久久久久秒播| 久久综合成人精品亚洲另类欧美| www.欧美日韩| 蜜桃一区二区三区四区| 亚洲同性同志一二三专区| 日韩无一区二区| 成人国产一区二区三区精品| 樱桃国产成人精品视频| 久久综合狠狠综合| 欧美日韩国产影片| 成人精品在线视频观看| 首页亚洲欧美制服丝腿| 国产精品国产三级国产| 精品精品欲导航| 欧美日本乱大交xxxxx| av亚洲精华国产精华| 国产成人亚洲精品狼色在线| 青青草国产精品97视觉盛宴| 玉米视频成人免费看| 欧美国产97人人爽人人喊| 日韩免费视频一区| 精品国产自在久精品国产| 欧美挠脚心视频网站| 精品一区二区免费在线观看|