亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? tfdemo5.m

?? matlab里面有用的一個時頻工具箱
?? M
字號:
%TFDEMO5 Affine class time-frequency distributions.
%	Time-Frequency Toolbox demonstration.
%
%	See also TFDEMO.

%	O. Lemoine - July 1996. 
%	Copyright (c) CNRS.

clc; zoom on; clf; 
echo on;

% The Affine class : presentation
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% This class gathers all the quadratic time-frequency representations 
% which are covariant by translation in time and dilation. The WVD is
% an element of the affine class, provided that we introduce an 
% arbitrary non-zero frequency nu0, and identify the scale with the 
% inverse of the frequency : a=nu0/nu.
% The choice of an element in the affine class can be reduced to the 
% choice of an affine correlation kernel PI(t,nu). When PI is a 
% two-dimensional low-pass function, it plays the role of an affine
% smoothing function which tries to reduce the interferences generated 
% by the WVD.
%
% The scalogram 
%"""""""""""""""
%  A first example of affine distribution is given by the scalogram,
% which is the squared modulus of the wavelet transform. It is the affine
% counterpart of the spectrogram. As illustrated in the following example,
% the tradeoff between time and frequency resolutions encountered with the
% spectrogram is also present with the scalogram.
%  We analyze a signal composed of two gaussian atoms, one with a low 
% central frequency, and the other with a high one, with the scalogram 
% (Morlet wavelet) :

sig=atoms(128,[38,0.1,32,1;96,0.35,32,1]);
clf; tfrscalo(sig);
% The result obtained brings to the fore dependency, with regard to the 
% frequency, of the smoothing applied to the WVD, and consequently of the
% resolutions in time and frequency.
%
% Press any key to continue...
 
pause; clc; clf; 


% The affine smoothed pseudo Wigner distribution (ASPWVD)
%"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
%  One way to overcome the tradeoff between time and frequency resolutions
% of the scalogram is, as for the smoothed-pseudo-WVD, to use a smoothing
% function which is separable in time and frequency. The resulting
% distribution is called the affine smoothed pseudo WVD. It allows a 
% flexible choice of time and scale resolutions in an independent manner 
% through the choice of two windows g and h. 

echo off
continue=1;
fprintf('The next step requires patience. Do you want to skip it ?\n');
while (continue==1),
 answer=upper(input('y or n : ','s'));
 continue=~strcmp(answer,'Y') & ~strcmp(answer,'N');
end;
echo on

if (answer=='N'),
%  As for the SPWVD, the ASPWVD allows a continuous passage from the 
% scalogram to the WVD, under the condition that the smoothing functions 
% g and h are gaussian. The time-bandwidth product then goes from 1 
% (scalogram) to 0 (WVD), with an independent control of the time and 
% frequency resolutions. This is illustrated in the following example :

set(gca,'visible','off');
M=movsc2wv(128,15);
movie(M,5);

% Here again, the WVD gives the best resolutions (in time and in frequency),
% but presents the most important interferences, whereas the scalogram gives
% the worst resolutions, but with nearly no interferences ; and the affine
% smoothed-pseudo WVD allows to choose the best compromise between these two
% extremes.
%
end;
% Press any key to continue...
pause; clc; close

% The localized bi-frequency kernel (or affine Wigner) distributions
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%  A useful subclass of the affine class consists in characterization
% functions which are perfectly localized on power laws or logarithmic laws
% in their bi-frequency representation. The corresponding time-scale 
% distributions are known as the localized bi-frequency kernel distributions.
% 
% The Bertrand distribution
%"""""""""""""""""""""""""""
%  If we further impose to these distributions the a priori requirements of
% time localization and unitarity, we obtain the Bertrand distribution. This
% distribution satisfies many properties, and is the only localized
% bi-frequency kernel distribution which localizes perfectly the hyperbolic
% group delay signals. To illustrate this property, consider the signal 
% obtained using the file gdpower.m (taken for k=0), and analyze it with 
% the file tfrbert.m :

sig=gdpower(128);
tfrbert(sig,1:128,0.01,0.22,128,1);
% Note that the distribution obtained is well localized on the hyperbolic
% group delay, but not perfectly : this comes from the fact that the file
% tfrbert.m works only on a subpart of the spectrum, between two bounds fmin
% and fmax.
%
% Press any key to continue...
 
pause; clc;

% The D-Flandrin distribution 
%"""""""""""""""""""""""""""""
%  If we now look for a localized bi-frequency kernel distribution which is
% real, localized in time and which validates the time-marginal property, 
% we obtain the D-Flandrin distribution. It is the only localized 
% bi-frequency kernel distribution which localizes perfectly signals having 
% a group delay in 1/sqrt(nu). This can be illustrated as following :

sig=gdpower(128,1/2);
tfrdfla(sig,1:128,0.01,0.22,128,1);
% Here again, the distribution is almost perfectly localized.
%
% Press any key to continue...
 
pause; clc;

% The active Unterberger distribution
%"""""""""""""""""""""""""""""""""""""
%  Finally, the only localized bi-frequency kernel distribution which
% localizes perfectly signals having a group delay in 1/nu^2 is the active
% Unterberger distribution :

sig=gdpower(128,-1);
tfrunter(sig,1:128,'A',0.01,0.22,172,1);
% Press any key to continue...
 
pause; clc;

% Relation with the ambiguity domain
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%  When the signal under analysis can not be considered as narrow-band
% (i.e. when its bandwidth B is not negligible compared to its central
% frequency nu0), the narrow-band ambiguity function is no longer appropriate
% since the Doppler effect can not be approximated as a frequency-shift. We
% then consider a wide-band ambiguity function (WAF). It corresponds to 
% the wavelet transform of the signal x, whose mother wavelet is the signal
% x itself. It is then an affine correlation function, which measure the 
% similarity between the signal and its translated (in time) and dilated 
% versions. To see how it behaves on a practical example, let us consider an
% Altes signal :
	
sig=altes(128,0.1,0.45);
clf; ambifuwb(sig);

% The WAF is maximum at the origin of the ambiguity plane.  
%
% Press any key to continue...
 
pause; clc
  
% Interference structure
%~~~~~~~~~~~~~~~~~~~~~~~~
%  The interference structure of the localized bi-frequency kernel 
% distributions can be determined thanks to the following geometric 
% argument : two points (t1,nu1) and (t2,nu2) belonging to the trajectory 
% on which a distribution is localized interfere on a third point 
% (ti,nui) which is necessarily located on the same trajectory.
%  To illustrate this interference geometry, let us consider the case of a
% signal with a sinusoidal frequency modulation :

[sig,ifl]=fmsin(128);

% The file plotsid.m allows one to construct the interferences of an affine
% Wigner distribution perfectly localized on a power-law group-delay
% (specifying k), for a given instantaneous frequency law (or the
% superposition of different instantaneous frequency laws). For example, if
% we consider the case of the Bertrand distribution (k=0),

plotsid(1:128,ifl,0);

% we obtain an interference structure completely different from the one
% obtained for the Wigner-Ville distribution (k=2) :
%
% press any key to continue...
 
pause;

plotsid(1:128,ifl,2);

% For the active Unterberger distribution (k=-1), the result is the
% following : 
%
% press any key to continue...
 
pause;

plotsid(1:128,ifl,-1);
 
% Press any key to continue...
 
pause; clc

% The pseudo affine Wigner distributions
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%   The affine Wigner distributions show great potential as flexible
% tools for time-varying spectral analysis. However, as some distributions of
% the Cohen's class, they present two major practical limitations : first the
% entire signal enters into the calculation of these distributions at every
% point (t,nu), and second, due to their nonlinearity, interference
% components arise between each pair of signal components. To overcome these
% limitations, a set of (smoothed) pseudo affine Wigner distributions has
% been introduced.
%  Here are two examples of such distributions, analyzed on a real 
% echolocation signal from a bat :

echo off
DirectoryStr='';
while (exist([DirectoryStr 'bat.mat'])==0),
 fprintf('I can''t find %s\n', [DirectoryStr 'gabor.mat']);
 DirectoryStr=input('name of the directory where bat.mat is : ','s');
end;
eval(['load ' DirectoryStr 'bat.mat']);
echo on

N=2048; sig=hilbert(bat(400+(1:N))');

% The affine smoothed pseudo Wigner distribution 
%------------------------------------------------

figure(1); tfrwv(sig,1:8:N,256); 
figure(2); tfrspaw(sig,1:8:N,2,24,0,0.1,0.4,256,1); 

% On the left, the WVD presents interference terms because of the
% non-linearity of the frequency modulation. On the right, the affine
% frequency smoothing operated by the affine smoothed pseudo Wigner
% distribution almost perfectly suppressed the interference terms.
%
% Press any key to continue...
 
pause; clc

% The pseudo Bertrand distribution
%----------------------------------

figure(1); tfrbert(sig,1:8:N,0.1,0.4,256,1);
figure(2); tfrspaw(sig,1:8:N,0,32,0,0.1,0.4,256,1); 

% The first plot represents the Bertrand distribution. The approximate
% hyperbolic group delay law of the bat signal explains the good result
% obtained with this distribution (compared to the WVD). However, it
% remains some interference terms, which are almost perfectly canceled
% on the second plot (pseudo Bertrand distribution).
%
% Press any key to end this demonstration

pause; close;
echo off

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
99re这里只有精品视频首页| 亚洲色图视频网| 欧美性受xxxx黑人xyx性爽| 久久99精品久久久久婷婷| 日韩一区欧美二区| 午夜精品久久久久影视| 亚洲国产日韩a在线播放| 一卡二卡欧美日韩| 亚洲18色成人| 久久超碰97中文字幕| 日本欧美久久久久免费播放网| 亚洲电影一区二区| 天堂一区二区在线| 久久aⅴ国产欧美74aaa| 久久精品99国产国产精| 国产一区在线不卡| 岛国av在线一区| 91影视在线播放| 欧洲亚洲国产日韩| 91超碰这里只有精品国产| 欧美日韩精品欧美日韩精品一综合| 欧美中文字幕一区二区三区亚洲| 在线视频国内一区二区| 91精品国产综合久久小美女| 91精品国产全国免费观看| 欧美电影免费观看高清完整版在 | 色综合一区二区| 欧美午夜影院一区| 欧美成人精品福利| 国产精品免费视频观看| 一区二区中文视频| 日韩成人一区二区| 懂色av中文一区二区三区| 色婷婷一区二区三区四区| 欧美喷水一区二区| 日本一区二区在线不卡| 亚洲已满18点击进入久久| 秋霞影院一区二区| 国产不卡在线播放| 欧美人妇做爰xxxⅹ性高电影 | 国产午夜亚洲精品理论片色戒| 国产精品福利影院| 天天爽夜夜爽夜夜爽精品视频| 国产在线国偷精品产拍免费yy| 99视频有精品| 欧美不卡一区二区| 亚洲成人av免费| 不卡av在线网| 日韩午夜在线观看视频| 中文字幕中文字幕一区| 久久爱www久久做| 欧美三级日韩在线| 一区在线观看视频| 精品系列免费在线观看| 欧美人妖巨大在线| 一区二区免费在线| www.久久精品| 国产亚洲一二三区| 免费成人你懂的| 欧美性受xxxx黑人xyx性爽| 中文字幕精品一区二区精品绿巨人| 五月天精品一区二区三区| 不卡av在线网| 日本一二三不卡| 激情综合亚洲精品| 欧美一卡2卡三卡4卡5免费| 亚洲欧美日韩国产另类专区| 国产精品综合在线视频| 91精品国产高清一区二区三区蜜臀| 亚洲视频每日更新| av日韩在线网站| 国产精品萝li| av在线综合网| 中文字幕中文字幕一区| 成人av资源在线| 国产精品久久国产精麻豆99网站| 激情欧美一区二区| 精品国产成人系列| 青青草原综合久久大伊人精品 | 成人av网址在线| 中文字幕乱码日本亚洲一区二区| 国产精品一区二区三区四区| 精品国产成人系列| 国产精品一级黄| 国产欧美一区二区三区网站| 国产精品自拍一区| 国产色一区二区| 成人av动漫网站| 亚洲免费av高清| 日本丰满少妇一区二区三区| 亚洲精品乱码久久久久久久久| 91一区在线观看| 午夜成人免费视频| 91麻豆精品国产91| 激情五月婷婷综合| 久久精品夜夜夜夜久久| 成人福利视频在线看| 日韩美女啊v在线免费观看| 91成人在线免费观看| 婷婷激情综合网| 久久精品一区二区| 91久久香蕉国产日韩欧美9色| 亚洲另类在线制服丝袜| 欧美视频一区在线观看| 日本女人一区二区三区| 国产欧美一区二区精品久导航| 成人动漫一区二区三区| 香蕉成人伊视频在线观看| 精品999在线播放| 91蜜桃网址入口| 日本不卡视频在线| 国产精品女同一区二区三区| 欧美最新大片在线看 | 国产亚洲一本大道中文在线| 99国产精品视频免费观看| 亚洲国产毛片aaaaa无费看 | 最新欧美精品一区二区三区| 欧美日韩精品一区二区| 国产成人av电影在线播放| 亚洲午夜视频在线| 久久久国际精品| 欧美二区三区的天堂| 成人激情视频网站| 日韩国产在线观看| 亚洲人成精品久久久久| 精品va天堂亚洲国产| 欧美色视频在线观看| 成人福利视频在线看| 久久国内精品自在自线400部| 亚洲欧洲精品天堂一级| 欧美v日韩v国产v| 欧美午夜一区二区| 99精品偷自拍| 国产精品自拍在线| 蜜臀99久久精品久久久久久软件| 亚洲视频一区二区免费在线观看| 久久免费电影网| 欧美成人国产一区二区| 欧美日韩免费不卡视频一区二区三区| 国产v日产∨综合v精品视频| 男女男精品网站| 视频一区在线播放| 一级精品视频在线观看宜春院 | 91免费精品国自产拍在线不卡 | 91麻豆国产福利精品| 国产**成人网毛片九色| 精品亚洲aⅴ乱码一区二区三区| 午夜电影久久久| 天天影视涩香欲综合网| 亚洲精品成人精品456| 国产精品久久久久影视| 日本一区二区在线不卡| 国产午夜精品福利| 久久久欧美精品sm网站| 精品黑人一区二区三区久久| 日韩三级在线观看| 欧美精品1区2区3区| 欧美视频一区二区三区四区 | www.亚洲国产| 一本色道久久加勒比精品 | 日韩主播视频在线| 日日夜夜免费精品| 无码av免费一区二区三区试看| 亚洲第一搞黄网站| 亚洲一区二区av在线| 亚洲国产精品天堂| 日日欢夜夜爽一区| 久久国产精品72免费观看| 激情深爱一区二区| 丰满岳乱妇一区二区三区| 成人精品鲁一区一区二区| 99re这里只有精品首页| 欧洲视频一区二区| 91精品国产一区二区三区蜜臀 | 91精品国产综合久久久久久漫画 | 日韩制服丝袜先锋影音| 久久不见久久见免费视频7| 丰满放荡岳乱妇91ww| 一本大道久久a久久综合婷婷| 欧美最新大片在线看| 日韩一区国产二区欧美三区| 久久综合av免费| 国产精品天干天干在线综合| 一区二区三区日本| 精品影院一区二区久久久| 99综合影院在线| 日韩精品中文字幕在线一区| 国产亚洲视频系列| 天堂av在线一区| 成人午夜在线播放| 欧美日韩国产欧美日美国产精品| 欧美日韩国产一级| 成av人片一区二区| 欧美亚洲综合网| 日韩欧美国产麻豆| 26uuu亚洲综合色欧美| 亚洲国产欧美日韩另类综合 | 国产一区91精品张津瑜| 国产福利精品一区二区| 九九精品一区二区|