?? main_rs.c
字號:
/*****************************************************************************//* FIle Name : main_rs.c *//* Description : Main routine to Test Reed-Solomon FEC *//* author : miffie *//* Date : sep/23/05 *//* Copyright (c) 2005 miffie All rights reserved. *//*****************************************************************************///Special thanks to original author of this code/* This program is an encoder/decoder for Reed-Solomon codes. Encoding is in systematic form, decoding via the Berlekamp iterative algorithm. In the present form , the constants mm, nn, tt, and kk=nn-2tt must be specified (the double letters are used simply to avoid clashes with other n,k,t used in other programs into which this was incorporated!) Also, the irreducible polynomial used to generate GF(2**mm) must also be entered -- these can be found in Lin and Costello, and also Clark and Cain. The representation of the elements of GF(2**m) is either in index form, where the number is the power of the primitive element alpha, which is convenient for multiplication (add the powers modulo 2**m-1) or in polynomial form, where the bits represent the coefficients of the polynomial representation of the number, which is the most convenient form for addition. The two forms are swapped between via lookup tables. This leads to fairly messy looking expressions, but unfortunately, there is no easy alternative when working with Galois arithmetic. The code is not written in the most elegant way, but to the best of my knowledge, (no absolute guarantees!), it works. However, when including it into a simulation program, you may want to do some conversion of global variables (used here because I am lazy!) to local variables where appropriate, and passing parameters (eg array addresses) to the functions may be a sensible move to reduce the number of global variables and thus decrease the chance of a bug being introduced. This program does not handle erasures at present, but should not be hard to adapt to do this, as it is just an adjustment to the Berlekamp-Massey algorithm. It also does not attempt to decode past the BCH bound -- see Blahut "Theory and practice of error control codes" for how to do this. Simon Rockliff, University of Adelaide 21/9/89 26/6/91 Slight modifications to remove a compiler dependent bug which hadn't previously surfaced. A few extra comments added for clarity. Appears to all work fine, ready for posting to net! Notice -------- This program may be freely modified and/or given to whoever wants it. A condition of such distribution is that the author's contribution be acknowledged by his name being left in the comments heading the program, however no responsibility is accepted for any financial or other loss which may result from some unforseen errors or malfunctioning of the program during use. Simon Rockliff, 26th June 1991*/#include <math.h>#include <stdio.h>#include <stdlib.h>//Global variableschar print_on = 1 ;#define PRINTF if (print_on) printf#define FPRINTF if (print_on) fprintf#include "../env/binaryset.c"#include "../env/utility.c"#define mm 8 /* RS code over GF(2**4) - change to suit *///#define nn 255 /* nn=2**mm -1 length of codeword *///#define tt 16 /* number of errors that can be corrected *///#define kk 223 /* kk = nn-2*tt */int pp [mm+1] = { 1, 0, 1, 1, 1, 0, 0, 0, 1} ; /* specify irreducible polynomial coeffts */#include "encode_rs.c"#include "decode_rs.c"main(){ static int NN = 255 ; register int ii , jj ; char num_erasure ; char fail ; char RR ; short KK , num_data ; struct binaryset bset, exp ; unsigned char data[NN] ; char message[] = { 0xd4, 0xba, 0xa1, 0x12, 0xf2, 0x74, 0x96, 0x30, 0x27, 0xd4, 0x88, 0x9c, 0x96, 0xe3, 0xa9, 0x52, 0xb3, 0x15, 0xab, 0xfd, 0x92, 0x53, 0x07, 0x32, 0xc0, 0x62, 0x48, 0xf0, 0x19, 0x22, 0xe0, 0x91, 0x62, 0x1a, 0xc1 } ; //0x23 //multiple tests for (jj=0;jj<1000;jj++) { //each test RR=int_random(17)*2 ; // 2 bytes * number of errors that can be corrected(tt) KK= NN-RR ; //number of data inputs to encoder /* for known data, stick a few numbers into a zero codeword. Data is in polynomial form. */ //make a binary set num_data = int_random(KK+1) ; //0-KK printf("\n %d th Test(RR=%d num_data=%d)\n\n", jj, RR, num_data ) ; for (ii=0; ii<num_data; ii++) data[ii] = int_random(256)&NN ; bset.format = 1 ; bset.data = &data[0] ; bset.size = num_data ; /* encode data[] to produce parity in bb[]. Data input and parity output is in polynomial form */ exp = copy_binaryset(bset) ; print_binaryset(bset) ; bset = encode_rs(bset, RR ) ; print_binaryset(bset) ; /* if you want to test the program, corrupt some of the elements of recd[] here. This can also be done easily in a debugger. */ num_erasure = int_random((RR/2)+1) ; //0-RR printf("..adding %d out of %d errors\n", num_erasure, num_data ) ; for(ii=0; ii<num_erasure; ii++) bset.data[(int_random(bset.size+1)&NN)] ^= int_random(256) ; print_binaryset(bset) ; /* decode recv[] */ bset = decode_rs( bset, RR ) ; /* recd[] is returned in polynomial form */ print_binaryset(bset) ; fail = compare_binaryset( exp , bset ) ; } //each test}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -