亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲(chóng)蟲(chóng)下載站! | ?? 資源下載 ?? 資源專(zhuān)輯 ?? 關(guān)于我們
? 蟲(chóng)蟲(chóng)下載站

?? flwt.c

?? 大師寫(xiě)的二代小波經(jīng)典之作
?? C
?? 第 1 頁(yè) / 共 4 頁(yè)
字號(hào):
            if (nY-- > 0) {                /* Apply forward transform to the columns */                for ( x=0 ; x<width ; x+=step ) {                    FLWT1D_Predict ( &Data[0][x], (long)height, (long)width,                                     (long)step, (long)N );                    FLWT1D_Update ( &Data[0][x], (long)height, (long)width,                                    (long)step, (long)nTilde, liftingY[nY] );                }            }        }    } else {   /* Inverse transform */        /* Switch sign of filter & lifting coefficients */        for ( i=0 ; i<N*(1+(N>>1)) ; i++ )            filter[i] = -filter[i];                 /* negate filter */        for ( x=0 ; x<nX ; x++ )            for ( k=0 ; k<(width>>1)*nTilde ; k++ )                liftingX[x][k] = -liftingX[x][k];   /* negate lifting in X */        for ( y=0 ; y<nY ; y++ )            for ( k=0 ; k<(height>>1)*nTilde ; k++ )                liftingY[y][k] = -liftingY[y][k];   /* negate lifting in Y */        /* Find original dataset */        max_step = (n==0) ? 0 : 1<<(n-1);   /* initial step */        for ( step = max_step ; step >= 1 ; step >>= 1 ) {            if (n <= nY) {                /* Apply inverse transform to the columns */                for ( x=0 ; x<width ; x+=step ) {                    FLWT1D_Update ( &Data[0][x], (long)height, (long)width,                                    (long)step, (long)nTilde, liftingY[nY-n] );                    FLWT1D_Predict ( &Data[0][x], (long)height, (long)width,                                     (long)step, (long)N );                }            }                if (n <= nX) {                /* Apply inverse transform to the rows */                for ( y=0 ; y<height ; y+=step ) {                    FLWT1D_Update ( &Data[y][0], (long)width, 1,                                    (long)step, (long)nTilde, liftingX[nX-n] );                    FLWT1D_Predict ( &Data[y][0], (long)width, 1,                                     (long)step, (long)N );                }            }                n--;   /* one less level to go */        }        /* Switch sign of filter & lifting coefficients again */        for ( i=0 ; i<N*(1+(N>>1)) ; i++ )            filter[i] = -filter[i];                 /* negate filter */        for ( x=0 ; x<nX ; x++ )            for ( k=0 ; k<(width>>1)*nTilde ; k++ )                liftingX[x][k] = -liftingX[x][k];   /* negate lifting in X */        for ( y=0 ; y<nY ; y++ )            for ( k=0 ; k<(height>>1)*nTilde ; k++ )                liftingY[y][k] = -liftingY[y][k];   /* negate lifting in Y */    }}/* * FLWT1D function: This is a 1D Direct/Inverse Fast Lifted Wavelet *                  Trasform. Since the Lifting Scheme is used, the final *                  coefficients are organized in-place in the original  *                  vector Data[]. In file mallat.c there are *                  functions provided to change this organization to *                  the Isotropic format originally established by Mallat. */voidFLWT1D ( Vector Data, const int width,                      const int N, const int nTilde,                      const int levels, const boolean inverse ){    int i, k, x, s,       /* counters */        step, max_step,   /* step size and max./init. step */        nX;               /* number of iterations in X and Y directions */    Flt maxN;             /* maximum number of vanishing moments */    /* Verify for existence of filter and lifting coefficients */    if (!filter) {        Error ("FLWT1D", NO_FILTER_VECTOR, ABORT);    }    if ( !liftingX && !liftingY ) {	fprintf( stderr,	         "\nFLWT1D(): lifting coefficients are not initialized."		 "\nUse GetDual() and GetReal() before calling this "                 "function.\n");        exit( INPUT_ERROR );    }    /* Calculate number of iterations n. It is the maximum  */    /* value such that the following relation is satisfied. */    /*        (2^n)*(N-1) <= L < (2^(n+1))*(N-1) + 1        */    /* Where L = max (signal's length in X-Y direction).    */    /* and N = max (# dual vanish mom & # real vanish mom)  */    /* Hence, solving for n, we have the following equation */    /* for all the cases:  n = floor (log_2((L-1)/(N-1))    */    maxN = (Flt)MAX(N, nTilde) - (Flt)1;   /* max vanishing moments */    /* Iterations in X */    nX = (width == 1) ? 0 : (int)logBaseN( (Flt)(width-1)/maxN, (Flt)2 );    nX = (nX < 0) ? 0 : MIN(levels, nX);   /* find lowest level */    if ( !inverse ) {    /* Forward transform */        /* Calculate wavelet coefficients */        max_step = (nX==0) ? 0 : 1<<nX;   /* maximum step */        for ( step=1, s=nX-1 ; step<max_step ; step<<=1, s-- ) {            /* Apply forward transform to the vector */            FLWT1D_Predict ( Data, (long)width, 1,                             (long)step, (long)N );            FLWT1D_Update ( Data, (long)width, 1,                            (long)step, (long)nTilde, liftingX[s] );        }    } else {   /* Inverse transform */        /* Switch sign of filter & lifting coefficients */        for ( i=0 ; i<N*(1+(N>>1)) ; i++ )            filter[i] = -filter[i];                 /* negate filter */        for ( x=0 ; x<nX ; x++ )            for ( k=0 ; k<(width>>1)*nTilde ; k++ )                liftingX[x][k] = -liftingX[x][k];   /* negate lifting in X */        /* Find original dataset */        max_step = (nX==0) ? 0 : 1<<(nX-1);   /* initial step */        for ( step=max_step, s=0 ; step>=1 ; step>>=1, s++ ) {            /* Apply inverse transform to the vector */            FLWT1D_Update ( Data, (long)width, 1,                            (long)step, (long)nTilde, liftingX[s] );            FLWT1D_Predict ( Data, (long)width, 1,                             (long)step, (long)N );        }        /* Switch sign of filter & lifting coefficients again */        for ( i=0 ; i<N*(1+(N>>1)) ; i++ )            filter[i] = -filter[i];                 /* negate filter */        for ( x=0 ; x<nX ; x++ )            for ( k=0 ; k<(width>>1)*nTilde ; k++ )                liftingX[x][k] = -liftingX[x][k];   /* negate lifting in X */    }}/* * FLWT1D_Predict function: The Gamma coefficients are found as an average *                          interpolation of their neighbors in order to find *                          the "failure to be linear" or "failure to be *                          cubic" or the failure to be the order given by *                          N-1. This process uses the filter coefficients *                          stored in the filter vector and predicts *                          the odd samples based on the even ones *                          storing the difference in the gammas. *                          By doing so, a Dual Wavelet is created. */voidFLWT1D_Predict ( Vector vect, const long size, const long incr,                              const long step, const long N ){    register Vector lambdaPtr,       /* pointer to Lambda coefficients */                    gammaPtr,        /* pointer to Gamma coefficients */                    fP, filterPtr;   /* pointers to filter coefficients */    register long len,               /* number of coefficients at current level */                  j,                 /* counter for the filter cases */                  stepIncr;          /* step size between coefficients of the same type */    long stop1,                      /* number of cases when L < R */         stop2,                      /* number of cases when L = R */         stop3,                      /* number of cases when L > R */         soi;                        /* increment for the middle cases */    /************************************************/    /* Calculate values of some important variables */    /************************************************/    len       = CEIL(size, step);   /* number of coefficients at current level */    stepIncr  = (step*incr) << 1;   /* step size betweeen coefficients */    /************************************************/    /* Calculate number of iterations for each case */    /************************************************/    j     = ODD(len);    stop1 = N >> 1;    stop3 = stop1 - j;                /* L > R */    stop2 = (len >> 1) - N + 1 + j;   /* L = R */    stop1--;                          /* L < R */    /***************************************************/    /* Predict Gamma (wavelet) coefficients (odd guys) */    /***************************************************/    filterPtr = filter + N;   /* position filter pointer */    /* Cases where nbr. left Lambdas < nbr. right Lambdas */    gammaPtr = vect + (stepIncr >> 1);   /* second coefficient is Gamma */    while(stop1--) {        lambdaPtr = vect;   /* first coefficient is always first Lambda */        j = N;        do {   /* Gamma update (Gamma - predicted value) */            *(gammaPtr) -= (*(lambdaPtr)*(*(filterPtr++)));            lambdaPtr   += stepIncr;   /* jump to next Lambda coefficient */        } while(--j);   /* use all N filter coefficients */        /* Go to next Gamma coefficient */        gammaPtr += stepIncr;    }    /* Cases where nbr. left Lambdas = nbr. right Lambdas */    soi = 0;    while(stop2--) {        lambdaPtr = vect + soi;   /* first Lambda to be read */        fP = filterPtr;   /* filter stays in same values for this cases */        j = N;        do {   /* Gamma update (Gamma - predicted value) */            *(gammaPtr) -= (*(lambdaPtr)*(*(fP++)));            lambdaPtr   += stepIncr;   /* jump to next Lambda coefficient */        } while(--j);   /* use all N filter coefficients */        /* Move start point for the Lambdas */        soi += stepIncr;        /* Go to next Gamma coefficient */        gammaPtr += stepIncr;    }    /* Cases where nbr. left Lambdas > nbr. right Lambdas */    fP = filterPtr;   /* start going backwards with the filter coefficients */    vect += (soi-stepIncr);   /* first Lambda is always in this place */    while (stop3--) {        lambdaPtr = vect;   /* position Lambda pointer */        j = N;        do {   /* Gamma update (Gamma - predicted value) */            *(gammaPtr) -= (*(lambdaPtr)*(*(--fP)));            lambdaPtr   += stepIncr;   /* jump to next Lambda coefficient */        } while(--j);   /* use all N filter coefficients */        /* Go to next Gamma coefficient */        gammaPtr += stepIncr;    }}/* * FLWT1D_Update: the Lambda coefficients have to be "lifted" in order *                to find the real wavelet coefficients. The new Lambdas *                are obtained  by applying the lifting coeffients stored *                in the lifting vector together with the gammas found in *                the prediction stage. This process assures that the *                moments of the wavelet function are preserved. */voidFLWT1D_Update ( Vector vect, const long size, const long incr,                             const long step, const long nTilde,                             const Vector lc ){    register Vector lcPtr,   /* pointer to lifting coefficient values */                    vL,      /* pointer to Lambda values */                    vG;      /* pointer to Gamma values */    register long j;         /* counter for the lifting cases */    long len,                /* number of coefficietns at current level */         stop1,              /* number of cases when L < R */         stop2,              /* number of cases when L = R */         stop3,              /* number of cases when L > R */         noGammas,           /* number of Gamma coefficients at this level */         stepIncr,           /* step size between coefficients of the same type */         soi;                /* increment for the middle cases */    /************************************************/    /* Calculate values of some important variables */    /************************************************/    len      = CEIL(size, step);   /* number of coefficients at current level */    stepIncr = (step*incr) << 1;   /* step size between coefficients */    noGammas = len >> 1 ;          /* number of Gamma coefficients */    /************************************************/    /* Calculate number of iterations for each case */    /************************************************/    j	  = ODD(len);    stop1 = nTilde >> 1;    stop3 = stop1 - j;                   /* L > R */    stop2 = noGammas - nTilde + 1 + j;   /* L = R */    stop1--;                             /* L < R */    /**********************************/    /* Lift Lambda values (even guys) */    /**********************************/    lcPtr = lc;   /* position lifting pointer */    /* Cases where nbr. left Lambdas < nbr. right Lambdas */    vG = vect + (stepIncr >> 1);   /* second coefficient is Gamma */    while(stop1--) {        vL = vect;   /* lambda starts always in first coefficient */        j = nTilde;        do {            *(vL) += (*(vG)*(*(lcPtr++)));   /* lift Lambda (Lambda + lifting value) */            vL    += stepIncr;               /* jump to next Lambda coefficient */        } while(--j);   /* use all nTilde lifting coefficients */        /* Go to next Gamma coefficient */        vG += stepIncr;

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
91.com视频| 欧美成人精品二区三区99精品| 夜夜操天天操亚洲| www激情久久| 欧美日韩一区二区三区四区| 国产河南妇女毛片精品久久久 | 白白色 亚洲乱淫| 日韩国产欧美三级| 亚洲精品五月天| 亚洲国产精品成人久久综合一区| 欧美日韩国产不卡| 91天堂素人约啪| 国产成人综合自拍| 老色鬼精品视频在线观看播放| 亚洲国产视频直播| 亚洲视频图片小说| 国产精品午夜久久| 久久久久久夜精品精品免费| 在线成人午夜影院| 欧美日韩一区二区三区在线看| 99国产精品99久久久久久| 国产麻豆精品久久一二三| 日本伊人色综合网| 亚洲成人av福利| 亚洲精品高清在线观看| 国产精品每日更新在线播放网址| 精品国产一区二区精华| 欧美精品视频www在线观看| 色噜噜狠狠成人中文综合| 不卡一区中文字幕| 成人禁用看黄a在线| 国产成人免费视频网站| 国产精品一区二区x88av| 紧缚奴在线一区二区三区| 日韩av电影天堂| 日韩精品乱码免费| 五月天视频一区| 五月婷婷另类国产| 天堂久久久久va久久久久| 亚洲成人免费看| 午夜电影一区二区三区| 亚洲成a人片综合在线| 亚洲午夜在线电影| 丝袜亚洲精品中文字幕一区| 亚洲成人av一区| 日本美女一区二区三区视频| 水野朝阳av一区二区三区| 午夜精品成人在线视频| 日韩精品三区四区| 久久精品99国产精品| 激情另类小说区图片区视频区| 狠狠色丁香婷婷综合| 国产成人在线观看免费网站| 国产.欧美.日韩| 91麻豆国产香蕉久久精品| 欧洲国产伦久久久久久久| 欧美日韩日日夜夜| 欧美成人乱码一区二区三区| 国产午夜精品一区二区三区嫩草| 国产欧美日产一区| 《视频一区视频二区| 亚洲国产精品一区二区久久| 免费在线观看不卡| 国产乱码精品一区二区三区av | 一本一道综合狠狠老| 欧洲亚洲国产日韩| 日韩欧美一二三区| 欧美国产日韩一二三区| 亚洲免费资源在线播放| 日韩成人精品在线观看| 国产一区二区三区香蕉| 91一区二区三区在线播放| 欧美熟乱第一页| 精品国产一区二区精华| 中文字幕一区二区三区在线不卡 | 精品国产一区二区国模嫣然| 国产婷婷色一区二区三区在线| 中文字幕在线不卡一区| 日韩电影免费在线看| 国产成人精品网址| 欧美日韩视频在线观看一区二区三区 | 韩国欧美国产1区| 波多野结衣精品在线| 制服丝袜在线91| 中文字幕精品三区| 日韩高清在线一区| 成人av网站免费观看| 在线不卡免费av| 国产精品无码永久免费888| 亚洲一二三级电影| 粉嫩av一区二区三区| 欧美卡1卡2卡| 国产精品水嫩水嫩| 蜜桃视频第一区免费观看| 99久久精品国产网站| 欧美成人一区二区三区片免费| 中文字幕一区二区三区av| 日本一道高清亚洲日美韩| 96av麻豆蜜桃一区二区| 日韩一级精品视频在线观看| 亚洲欧美国产高清| 国产成人aaa| 欧美一区二区三区在线| 尤物视频一区二区| 不卡视频一二三四| 国产偷v国产偷v亚洲高清| 免费成人你懂的| 在线免费观看视频一区| 欧美激情一区二区三区蜜桃视频| 日本成人在线一区| 91福利在线观看| 中文字幕亚洲区| 国产传媒一区在线| 久久尤物电影视频在线观看| 日韩中文欧美在线| 欧美三级日韩三级国产三级| 亚洲品质自拍视频| 国产一区二区成人久久免费影院 | 国产精品视频观看| 国产精品资源在线看| 91精品国产麻豆| 亚洲大片一区二区三区| 在线免费观看不卡av| 中文字幕在线观看一区| 国产成人av一区二区三区在线观看| 欧美一级高清片| 日本欧美一区二区| 欧美日韩电影在线播放| 亚洲午夜精品网| 欧美在线观看一区二区| 亚洲精品你懂的| 欧美性猛交xxxxxx富婆| 亚洲精品成人在线| 91丝袜高跟美女视频| 国产人成一区二区三区影院| 国产一区二区三区观看| 欧美变态口味重另类| 免费观看91视频大全| 日韩视频免费观看高清完整版在线观看| 亚洲欧美国产77777| 92精品国产成人观看免费| 亚洲人成人一区二区在线观看| 99精品视频一区二区| 亚洲人成精品久久久久| 在线中文字幕一区| 亚洲超碰精品一区二区| 91精品国产手机| 国产一区二区不卡在线| 国产亚洲欧美色| 99精品久久99久久久久| 亚洲另类在线一区| 欧美三级电影网站| 日韩精品一级二级 | 色狠狠桃花综合| 亚洲午夜久久久久久久久久久| 欧美日韩一二三区| 蜜臀av性久久久久蜜臀aⅴ四虎 | 国产在线观看一区二区| 国产精品网站一区| 欧美中文字幕亚洲一区二区va在线| 亚洲一二三专区| 日韩欧美国产三级电影视频| 国产精品亚洲一区二区三区妖精| 国产精品久久久久久久久久免费看 | 日韩激情av在线| 欧美刺激脚交jootjob| 国产成人亚洲综合a∨婷婷图片| 久久久久久久久久久久久女国产乱| 国产一区二区在线视频| 国产精品久久久久久久久免费相片 | 国产精品美女久久久久aⅴ国产馆| 91社区在线播放| 免费在线看一区| 中文字幕一区二区三区在线观看| 欧洲亚洲精品在线| 久久www免费人成看片高清| 国产精品视频看| 欧美人成免费网站| 国产精品一区在线观看你懂的| 国产精品不卡一区| 日韩亚洲国产中文字幕欧美| 国产v综合v亚洲欧| 亚洲成a人片在线观看中文| 久久精品亚洲精品国产欧美| 91国偷自产一区二区三区观看| 蜜桃av噜噜一区| 亚洲精品水蜜桃| 国产婷婷色一区二区三区 | 亚洲国产经典视频| 欧美精品丝袜中出| 波多野结衣中文字幕一区二区三区| 亚洲午夜三级在线| 中文久久乱码一区二区| 欧美区一区二区三区| 国产成人在线观看免费网站| 亚洲资源中文字幕| 亚洲欧洲日产国码二区| 欧美成人精品高清在线播放| 色爱区综合激月婷婷| 国产盗摄视频一区二区三区|