亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? readme

?? libsvm-2.84.rar
??
?? 第 1 頁 / 共 2 頁
字號:
Libsvm is a simple, easy-to-use, and efficient software for SVMclassification and regression. It solves C-SVM classification, nu-SVMclassification, one-class-SVM, epsilon-SVM regression, and nu-SVMregression. It also provides an automatic model selection tool forC-SVM classification. This document explains the use of libsvm.Libsvm is available at http://www.csie.ntu.edu.tw/~cjlin/libsvmPlease read the COPYRIGHT file before using libsvm.Table of Contents=================- Quick Start- Installation and Data Format- `svm-train' Usage- `svm-predict' Usage- Tips on Practical Use- Examples- Precomputed Kernels - Library Usage- Java Version- Building Windows Binaries- Additional Tools: Model Selection, Sub-sampling, etc.- Python Interface- Additional InformationQuick Start===========If you are new to SVM and if the data is not large, please go to `tools' directory and use easy.py after installation. It does everything automatic -- from data scaling to parameter selection.Usage: easy.py training_file [testing_file]More information about parameter selection can be found intools/README.Installation and Data Format============================On Unix systems, type `make' to build the `svm-train' and `svm-predict'programs. Run them without arguments to show the usages of them.On other systems, consult `Makefile' to build them (e.g., see'Building Windows binaries' in this file) or use the pre-builtbinaries (Windows binaries are in the directory `windows').The format of training and testing data file is:<label> <index1>:<value1> <index2>:<value2> ......For classification, <label> is an integer indicating the class label(multi-class is supported). For regression, <label> isthe target value which can be any real number. For one-class SVM, it'snot used so can be any number.  Except using precomputed kernels(explained in another section), <index>:<value> gives a feature(attribute) value.  <index> is an integer starting from 1 and <value>is a real number. Indices must be in an ASCENDING order. Labels in thetesting file are only used to calculate accuracy or errors. If theyare unknown, just fill the first column with any numbers.A sample classification data included in this package is `heart_scale'.Type `svm-train heart_scale', and the program will read the trainingdata and output the model file `heart_scale.model'. If you have a testset called heart_scale.t, then type `svm-predict heart_scale.theart_scale.model output' to see the prediction accuracy. The `output'file contains the predicted class labels.There are some other useful programs in this package.svm-scale:	This is a tool for scaling input data file.svm-toy:	This is a simple graphical interface which shows how SVM	separate data in a plane. You can click in the window to 	draw data points. Use "change" button to choose class 	1, 2 or 3 (i.e., up to three classes are supported), "load"	button to load data from a file, "save" button to save data to	a file, "run" button to obtain an SVM model, and "clear"	button to clear the window.	You can enter options in the bottom of the window, the syntax of	options is the same as `svm-train'.	Note that "load" and "save" consider data in the	classification but not the regression case. Each data point	has one label (the color) which must be 1, 2, or 3 and two	attributes (x-axis and y-axis values) in [0,1].	Type `make' in respective directories to build them.	You need Qt library to build the Qt version.	(available from http://www.trolltech.com)	You need GTK+ library to build the GTK version.	(available from http://www.gtk.org)		We use Visual C++ to build the Windows version.	The pre-built Windows binaries are in the windows directory.`svm-train' Usage=================Usage: svm-train [options] training_set_file [model_file]options:-s svm_type : set type of SVM (default 0)	0 -- C-SVC	1 -- nu-SVC	2 -- one-class SVM	3 -- epsilon-SVR	4 -- nu-SVR-t kernel_type : set type of kernel function (default 2)	0 -- linear: u'*v	1 -- polynomial: (gamma*u'*v + coef0)^degree	2 -- radial basis function: exp(-gamma*|u-v|^2)	3 -- sigmoid: tanh(gamma*u'*v + coef0)	4 -- precomputed kernel (kernel values in training_set_file)-d degree : set degree in kernel function (default 3)-g gamma : set gamma in kernel function (default 1/k)-r coef0 : set coef0 in kernel function (default 0)-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)-m cachesize : set cache memory size in MB (default 100)-e epsilon : set tolerance of termination criterion (default 0.001)-h shrinking: whether to use the shrinking heuristics, 0 or 1 (default 1)-b probability_estimates: whether to train an SVC or SVR model for probability estimates, 0 or 1 (default 0)-wi weight: set the parameter C of class i to weight*C in C-SVC (default 1)-v n: n-fold cross validation modeThe k in the -g option means the number of attributes in the input data.option -v randomly splits the data into n parts and calculates crossvalidation accuracy/mean squared error on them.`svm-predict' Usage===================Usage: svm-predict [options] test_file model_file output_fileoptions:-b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); for one-class SVM only 0 is supportedmodel_file is the model file generated by svm-train.test_file is the test data you want to predict.svm-predict will produce output in the output_file.Tips on Practical Use=====================* Scale your data. For example, scale each attribute to [0,1] or [-1,+1].* For C-SVC, consider using the model selection tool in the tools directory.* nu in nu-SVC/one-class-SVM/nu-SVR approximates the fraction of training  errors and support vectors.* If data for classification are unbalanced (e.g. many positive and  few negative), try different penalty parameters C by -wi (see  examples below).* Specify larger cache size (i.e., larger -m) for huge problems.Examples========> svm-scale -l -1 -u 1 -s range train > train.scale> svm-scale -r range test > test.scaleScale each feature of the training data to be in [-1,1]. Scalingfactors are stored in the file range and then used for scaling thetest data.> svm-train -s 0 -c 5 -t 2 -g 0.5 -e 0.1 data_file Train a classifier with RBF kernel exp(-0.5|u-v|^2), C=10, andstopping tolerance 0.1.> svm-train -s 3 -p 0.1 -t 0 data_fileSolve SVM regression with linear kernel u'v and epsilon=0.1in the loss function.> svm-train -c 10 -w1 1 -w-1 5 data_fileTrain a classifier with penalty 10 for class 1 and penalty 50for class -1.> svm-train -s 0 -c 100 -g 0.1 -v 5 data_fileDo five-fold cross validation for the classifier usingthe parameters C = 100 and gamma = 0.1> svm-train -s 0 -b 1 data_file> svm-predict -b 1 test_file data_file.model output_fileObtain a model with probability information and predict test data withprobability estimatesPrecomputed Kernels ===================Users may precompute kernel values and input them as training andtesting files.  Then libsvm does not need the originaltraining/testing sets.Assume there are L training instances x1, ..., xL and. Let K(x, y) be the kernelvalue of two instances x and y. The input formatsare:New training instance for xi:<label> 0:i 1:K(xi,x1) ... L:K(xi,xL) New testing instance for any x:<label> 0:? 1:K(x,x1) ... L:K(x,xL) That is, in the training file the first column must be the "ID" ofxi. In testing, ? can be any value.All kernel values including ZEROs must be explicitly provided.  Anypermutation or random subsets of the training/testing files are alsovalid (see examples below).Note: the format is slightly different from the precomputed kernelpackage released in libsvmtools earlier.Examples:	Assume the original training data has three four-feature	instances and testing data has one instance:	15  1:1 2:1 3:1 4:1	45      2:3     4:3	25          3:1	15  1:1     3:1	If the linear kernel is used, we have the following new	training/testing sets:	15  0:1 1:4 2:6  3:1	45  0:2 1:6 2:18 3:0 	25  0:3 1:1 2:0  3:1 	15  0:? 1:2 2:0  3:1	? can be any value.	Any subset of the above training file is also valid. For example,	25  0:3 1:1 2:0  3:1	45  0:2 1:6 2:18 3:0 	implies that the kernel matrix is		[K(2,2) K(2,3)] = [18 0]		[K(3,2) K(3,3)] = [0  1]Library Usage=============These functions and structures are declared in the header file `svm.h'.You need to #include "svm.h" in your C/C++ source files and link yourprogram with `svm.cpp'. You can see `svm-train.c' and `svm-predict.c'for examples showing how to use them.Before you classify test data, you need to construct an SVM model(`svm_model') using training data. A model can also be saved ina file for later use. Once an SVM model is available, you can use itto classify new data.- Function: struct svm_model *svm_train(const struct svm_problem *prob,					const struct svm_parameter *param);    This function constructs and returns an SVM model according to    the given training data and parameters.    struct svm_problem describes the problem:		struct svm_problem	{		int l;		double *y;		struct svm_node **x;	};     where `l' is the number of training data, and `y' is an array containing    their target values. (integers in classification, real numbers in    regression) `x' is an array of pointers, each of which points to a sparse    representation (array of svm_node) of one training vector.     For example, if we have the following training data:    LABEL	ATTR1	ATTR2	ATTR3	ATTR4	ATTR5    -----	-----	-----	-----	-----	-----      1		  0	  0.1	  0.2	  0	  0      2		  0	  0.1	  0.3	 -1.2	  0

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产精品资源站在线| av亚洲精华国产精华精| 国产伦精品一区二区三区免费 | 国产99久久久国产精品免费看| 天堂蜜桃91精品| 国内精品视频666| 91丨porny丨户外露出| 欧美男人的天堂一二区| 欧美精品一区二区精品网| 亚洲精品国产精华液| 粉嫩高潮美女一区二区三区| 欧美在线观看一二区| 国产欧美日韩不卡免费| 日韩电影在线观看一区| 91色porny在线视频| 久久精品一区二区三区不卡牛牛| 亚洲v中文字幕| 欧美性猛交xxxx乱大交退制版 | 成人av在线一区二区三区| 69堂精品视频| 午夜视频一区在线观看| 欧美色图在线观看| 99久久免费精品| 欧美tickle裸体挠脚心vk| 久久国内精品视频| 日韩免费观看高清完整版| 美日韩一级片在线观看| 日韩小视频在线观看专区| 蜜桃av一区二区| 这里只有精品免费| 精品一区二区三区影院在线午夜| 8v天堂国产在线一区二区| 一区二区三区四区五区视频在线观看| 国产mv日韩mv欧美| 国产精品福利电影一区二区三区四区| 日韩精品一级二级| 欧美va亚洲va香蕉在线| 青青青伊人色综合久久| www.亚洲激情.com| 欧美一级欧美三级在线观看| 国产欧美一区二区精品性| 国产成人在线观看免费网站| 久久奇米777| 国产在线精品一区二区| 国产午夜亚洲精品不卡 | 图片区日韩欧美亚洲| 色婷婷综合久久久中文一区二区| 亚洲午夜在线视频| 精品88久久久久88久久久| 成人av在线一区二区| 免费观看91视频大全| 久久综合久久鬼色中文字| eeuss影院一区二区三区| 亚洲精品视频自拍| 精品日韩在线一区| 欧美在线看片a免费观看| 麻豆91在线播放免费| 亚洲丝袜另类动漫二区| 欧美一级高清大全免费观看| 成人av集中营| 久久97超碰国产精品超碰| 久久久高清一区二区三区| 在线免费观看视频一区| av电影在线不卡| 国产传媒久久文化传媒| 久久精品99久久久| 亚洲国产欧美在线| 一级女性全黄久久生活片免费| 国产精品久久久久久久久免费樱桃 | 成人h精品动漫一区二区三区| 久久精品99久久久| 亚洲一区二区视频| 亚洲黄色av一区| 一区二区三区四区激情| 国产午夜亚洲精品午夜鲁丝片| 日韩片之四级片| 欧美成人乱码一区二区三区| 欧美日韩mp4| 欧美一区二区在线播放| 91黄视频在线| 91黄色免费看| 在线国产电影不卡| 欧美午夜精品久久久久久孕妇| 色综合欧美在线| 欧美午夜精品一区| 91精选在线观看| 91精品国产免费| 精品久久人人做人人爽| 久久久www成人免费毛片麻豆| 国产日韩精品视频一区| 亚洲欧洲一区二区在线播放| 亚洲黄色小说网站| 美女一区二区视频| 国内精品自线一区二区三区视频| 国产传媒一区在线| 在线一区二区三区四区| 日韩欧美一区二区视频| 久久伊人中文字幕| 国产精品久久久久久福利一牛影视| 亚洲男同性恋视频| 视频在线观看一区二区三区| 国产精一区二区三区| 欧美性xxxxxxxx| 久久婷婷国产综合精品青草 | 一区二区三区四区av| 美女视频黄免费的久久| 色婷婷亚洲一区二区三区| 精品久久久久久久久久久院品网| 亚洲欧洲日韩在线| 国产美女精品一区二区三区| 日本韩国欧美三级| 久久久久久久久岛国免费| 亚洲高清在线视频| 成人少妇影院yyyy| 精品国产伦一区二区三区观看方式 | 日韩女优av电影在线观看| 亚洲另类在线制服丝袜| 懂色av一区二区夜夜嗨| 欧美大白屁股肥臀xxxxxx| 亚洲日本一区二区| 国产成人综合精品三级| 欧美xxxx老人做受| 亚洲3atv精品一区二区三区| 97精品久久久久中文字幕 | 国产一区二区三区香蕉| 欧美一区二区日韩| 一区二区三区免费网站| 国产电影一区二区三区| 欧美日韩一区二区三区在线| 国产日韩精品一区二区浪潮av| 日本免费在线视频不卡一不卡二 | 日韩你懂的在线播放| 亚洲第一会所有码转帖| 韩国v欧美v日本v亚洲v| 精品三级在线观看| 麻豆高清免费国产一区| 欧美一区三区二区| 毛片av一区二区三区| 日韩亚洲欧美在线| 免费观看在线综合| 久久久综合网站| 成人看片黄a免费看在线| 日韩欧美一级二级三级| 国产一区二区三区四区在线观看 | 日韩限制级电影在线观看| 石原莉奈一区二区三区在线观看| 在线不卡的av| 国产综合久久久久久鬼色| 国产欧美日韩在线| 成人av先锋影音| 一区二区国产盗摄色噜噜| 欧美色老头old∨ideo| 奇米影视在线99精品| 精品国产伦一区二区三区观看方式 | 欧美国产精品专区| 色伊人久久综合中文字幕| 婷婷一区二区三区| 久久丝袜美腿综合| 欧美性做爰猛烈叫床潮| 精品一区二区三区免费观看| 国产精品国产自产拍在线| 欧美亚洲愉拍一区二区| 国产成人精品影视| 亚洲一区二区欧美日韩| 精品国产乱码久久久久久老虎 | 国产精品美日韩| 欧美大片在线观看| 91小视频在线观看| 日本欧美肥老太交大片| 久久嫩草精品久久久久| 日本精品视频一区二区| 国产毛片精品一区| 亚洲一区二区三区在线| 久久影院电视剧免费观看| 欧美三级电影一区| 国产·精品毛片| 久久国产欧美日韩精品| 亚洲一区电影777| 中文字幕不卡在线观看| 日韩精品一区二区三区老鸭窝| 91一区在线观看| 成人网页在线观看| 精品一二线国产| 亚洲成人福利片| 亚洲男人的天堂在线aⅴ视频| 久久精品夜色噜噜亚洲aⅴ| 欧美一区二区高清| 欧美性大战久久| 欧美性受xxxx黑人xyx性爽| 色综合天天综合网天天狠天天 | 国产在线一区观看| 精品写真视频在线观看 | 成人综合在线观看| 国产精品自拍一区| 激情五月婷婷综合| 国产自产v一区二区三区c| 激情都市一区二区| 看电视剧不卡顿的网站| 久热成人在线视频| 国产在线麻豆精品观看|