亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? readme

?? libsvm-2.84.rar
??
?? 第 1 頁 / 共 2 頁
字號:
      1		  0.4	  0	  0	  0	  0      2		  0	  0.1	  0	  1.4	  0.5      3		 -0.1	 -0.2	  0.1	  1.1	  0.1    then the components of svm_problem are:    l = 5    y -> 1 2 1 2 3    x -> [ ] -> (2,0.1) (3,0.2) (-1,?)	 [ ] -> (2,0.1) (3,0.3) (4,-1.2) (-1,?)	 [ ] -> (1,0.4) (-1,?)	 [ ] -> (2,0.1) (4,1.4) (5,0.5) (-1,?)	 [ ] -> (1,-0.1) (2,-0.2) (3,0.1) (4,1.1) (5,0.1) (-1,?)    where (index,value) is stored in the structure `svm_node':	struct svm_node	{		int index;		double value;	};    index = -1 indicates the end of one vector.     struct svm_parameter describes the parameters of an SVM model:	struct svm_parameter	{		int svm_type;		int kernel_type;		int degree;	/* for poly */		double gamma;	/* for poly/rbf/sigmoid */		double coef0;	/* for poly/sigmoid */		/* these are for training only */		double cache_size; /* in MB */		double eps;	/* stopping criteria */		double C;	/* for C_SVC, EPSILON_SVR, and NU_SVR */		int nr_weight;		/* for C_SVC */		int *weight_label;	/* for C_SVC */		double* weight;		/* for C_SVC */		double nu;	/* for NU_SVC, ONE_CLASS, and NU_SVR */		double p;	/* for EPSILON_SVR */		int shrinking;	/* use the shrinking heuristics */		int probability; /* do probability estimates */	};    svm_type can be one of C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR.    C_SVC:		C-SVM classification    NU_SVC:		nu-SVM classification    ONE_CLASS:		one-class-SVM    EPSILON_SVR:	epsilon-SVM regression    NU_SVR:		nu-SVM regression    kernel_type can be one of LINEAR, POLY, RBF, SIGMOID.    LINEAR:	u'*v    POLY:	(gamma*u'*v + coef0)^degree    RBF:	exp(-gamma*|u-v|^2)    SIGMOID:	tanh(gamma*u'*v + coef0)    PRECOMPUTED: kernel values in training_set_file    cache_size is the size of the kernel cache, specified in megabytes.    C is the cost of constraints violation. (we usually use 1 to 1000)    eps is the stopping criterion. (we usually use 0.00001 in nu-SVC,    0.001 in others). nu is the parameter in nu-SVM, nu-SVR, and    one-class-SVM. p is the epsilon in epsilon-insensitive loss function    of epsilon-SVM regression. shrinking = 1 means shrinking is conducted;    = 0 otherwise. probability = 1 means model with probability    information is obtained; = 0 otherwise.    nr_weight, weight_label, and weight are used to change the penalty    for some classes (If the weight for a class is not changed, it is    set to 1). This is useful for training classifier using unbalanced    input data or with asymmetric misclassification cost.    nr_weight is the number of elements in the array weight_label and    weight. Each weight[i] corresponds to weight_label[i], meaning that    the penalty of class weight_label[i] is scaled by a factor of weight[i].        If you do not want to change penalty for any of the classes,    just set nr_weight to 0.    *NOTE* Because svm_model contains pointers to svm_problem, you can    not free the memory used by svm_problem if you are still using the    svm_model produced by svm_train().     *NOTE* To avoid wrong parameters, svm_check_parameter() should be    called before svm_train().- Function: double svm_predict(const struct svm_model *model,                               const struct svm_node *x);    This function does classification or regression on a test vector x    given a model.    For a classification model, the predicted class for x is returned.    For a regression model, the function value of x calculated using    the model is returned. For an one-class model, +1 or -1 is    returned.- Function: void svm_cross_validation(const struct svm_problem *prob,	const struct svm_parameter *param, int nr_fold, double *target);    This function conducts cross validation. Data are separated to    nr_fold folds. Under given parameters, sequentially each fold is    validated using the model from training the remaining. Predicted    labels in the validation process are stored in the array called    target.    The format of svm_prob is same as that for svm_train(). - Function: int svm_get_svm_type(const struct svm_model *model);    This function gives svm_type of the model. Possible values of    svm_type are defined in svm.h.- Function: int svm_get_nr_class(const svm_model *model);    For a classification model, this function gives the number of    classes. For a regression or an one-class model, 2 is returned.- Function: void svm_get_labels(const svm_model *model, int* label)        For a classification model, this function outputs the name of    labels into an array called label. For regression and one-class    models, label is unchanged.- Function: double svm_get_svr_probability(const struct svm_model *model);    For a regression model with probability information, this function    outputs a value sigma > 0. For test data, we consider the    probability model: target value = predicted value + z, z: Laplace    distribution e^(-|z|/sigma)/(2sigma)    If the model is not for svr or does not contain required    information, 0 is returned.- Function: void svm_predict_values(const svm_model *model, 				    const svm_node *x, double* dec_values)    This function gives decision values on a test vector x given a    model.    For a classification model with nr_class classes, this function    gives nr_class*(nr_class-1)/2 decision values in the array    dec_values, where nr_class can be obtained from the function    svm_get_nr_class. The order is label[0] vs. label[1], ...,    label[0] vs. label[nr_class-1], label[1] vs. label[2], ...,    label[nr_class-2] vs. label[nr_class-1], where label can be    obtained from the function svm_get_labels.    For a regression model, label[0] is the function value of x    calculated using the model. For one-class model, label[0] is +1 or    -1.- Function: double svm_predict_probability(const struct svm_model *model, 	    const struct svm_node *x, double* prob_estimates);        This function does classification or regression on a test vector x    given a model with probability information.    For a classification model with probability information, this    function gives nr_class probability estimates in the array    prob_estimates. nr_class can be obtained from the function    svm_get_nr_class. The class with the highest probability is    returned. For regression/one-class SVM, the array prob_estimates    is unchanged and the returned value is the same as that of    svm_predict.- Function: const char *svm_check_parameter(const struct svm_problem *prob,                                            const struct svm_parameter *param);    This function checks whether the parameters are within the feasible    range of the problem. This function should be called before calling    svm_train() and svm_cross_validation(). It returns NULL if the    parameters are feasible, otherwise an error message is returned.- Function: int svm_check_probability_model(const struct svm_model *model);    This function checks whether the model contains required    information to do probability estimates. If so, it returns    +1. Otherwise, 0 is returned. This function should be called    before calling svm_get_svr_probability and    svm_predict_probability.- Function: int svm_save_model(const char *model_file_name,			       const struct svm_model *model);    This function saves a model to a file; returns 0 on success, or -1    if an error occurs.- Function: struct svm_model *svm_load_model(const char *model_file_name);    This function returns a pointer to the model read from the file,    or a null pointer if the model could not be loaded.- Function: void svm_destroy_model(struct svm_model *model);    This function frees the memory used by a model.- Function: void svm_destroy_param(struct svm_parameter *param);    This function frees the memory used by a parameter set.Java Version============The pre-compiled java class archive `libsvm.jar' and its source files arein the java directory. To run the programs, usejava -classpath libsvm.jar svm_train <arguments>java -classpath libsvm.jar svm_predict <arguments>java -classpath libsvm.jar svm_toyYou may need to add Java runtime library (like classes.zip) to the classpath.You may need to increase maximum Java heap size.Library usages are similar to the C version. These functions are available:public class svm {	public static svm_model svm_train(svm_problem prob, svm_parameter param);	public static void svm_cross_validation(svm_problem prob, svm_parameter param, int nr_fold, double[] target);	public static int svm_get_svm_type(svm_model model);	public static int svm_get_nr_class(svm_model model);	public static void svm_get_labels(svm_model model, int[] label);	public static double svm_get_svr_probability(svm_model model);	public static void svm_predict_values(svm_model model, svm_node[] x, double[] dec_values);	public static double svm_predict(svm_model model, svm_node[] x);	public static double svm_predict_probability(svm_model model, svm_node[] x, double[] prob_estimates);	public static void svm_save_model(String model_file_name, svm_model model) throws IOException	public static svm_model svm_load_model(String model_file_name) throws IOException	public static String svm_check_parameter(svm_problem prob, svm_parameter param);	public static int svm_check_probability_model(svm_model model);}The library is in the "libsvm" package.Note that in Java version, svm_node[] is not ended with a node whose index = -1.Building Windows Binaries=========================Windows binaries are in the directory `windows'. To build them viaVisual C++, use the following steps:1. Open a dos command box and change to libsvm directory. Ifenvironment variables of VC++ have not been set, type"C:\Program Files\Microsoft Visual Studio .NET 2003\Vc7\bin\vcvars32.bat"You may have to modify the above according which version of VC++orwhere it is installed.2. Typenmake -f Makefile.win clean all3. (optional) To build python interface, download and install Python.Edit Makefile.win and change PYTHON_INC and PYTHON_LIB to your pythoninstallation. Typenmake -f Makefile.win python and then copy windows\python\svmc.dll to the python directory.Another way is to build them from Visual C++ environment. See detailsin libsvm faq.Additional Tools: Model Selection, Sub-sampling, etc.====================================================See the README file in the tools directory.Python Interface================See the README file in python directory.Additional Information======================If you find LIBSVM helpful, please cite it asChih-Chung Chang and Chih-Jen Lin, LIBSVM: a library for support vector machines, 2001.Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvmLIBSVM implementation document is available athttp://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdfFor any questions and comments, please email cjlin@csie.ntu.edu.twAcknowledgments:This work was supported in part by the National Science Council of Taiwan via the grant NSC 89-2213-E-002-013.The authors thank their group members and usersfor many helpful discussions and comments. They are listed inhttp://www.csie.ntu.edu.tw/~cjlin/libsvm/acknowledgements

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
av在线这里只有精品| 亚洲精品综合在线| 国产精品乱人伦一区二区| 亚洲三级在线免费| 青草国产精品久久久久久| 色偷偷88欧美精品久久久| 精品久久五月天| 亚洲自拍偷拍av| 国产一区高清在线| 欧美美女bb生活片| 欧美亚洲禁片免费| 久久久久国产精品麻豆ai换脸| 亚洲已满18点击进入久久| 国产精品综合一区二区三区| 欧美色偷偷大香| 国产精品无人区| 国产精品理论在线观看| 日韩精品一卡二卡三卡四卡无卡| 99视频一区二区三区| 精品国产污污免费网站入口| 午夜精品久久久久久久久| 91色婷婷久久久久合中文| 国产人成亚洲第一网站在线播放| 久久精品国产99| 91精品欧美久久久久久动漫 | 久久99热这里只有精品| 欧美亚洲高清一区| 亚洲欧美色图小说| 白白色亚洲国产精品| 97久久超碰国产精品| 欧美激情一二三区| 久久不见久久见免费视频7 | 国产91在线|亚洲| 欧美一级午夜免费电影| 午夜久久电影网| 欧美视频在线不卡| 亚洲在线视频一区| 欧美在线不卡一区| 亚洲永久精品大片| 欧美日产国产精品| 青青草精品视频| 日韩一级黄色片| 美女网站色91| 亚洲精品在线观看网站| 精品一区二区在线观看| 精品国产百合女同互慰| 国产精品亲子伦对白| 91在线码无精品| 夜夜嗨av一区二区三区网页| 日本电影欧美片| 亚洲无人区一区| 日韩精品一区二区三区中文精品| 狠狠色综合色综合网络| 国产精品免费看片| 91论坛在线播放| 肉丝袜脚交视频一区二区| 日韩欧美亚洲国产精品字幕久久久 | 国产精品国产三级国产| 91色porny在线视频| 亚洲成人av福利| 精品国产乱码久久久久久蜜臀| 91精品在线观看入口| www.色综合.com| 国产精品入口麻豆原神| 欧美裸体bbwbbwbbw| 日本vs亚洲vs韩国一区三区二区| 欧美大片在线观看| 99久久国产免费看| 亚洲成人免费视| 久久综合色综合88| 色婷婷久久综合| 青椒成人免费视频| 中文字幕综合网| 日韩欧美国产精品| 99久久er热在这里只有精品66| 亚洲电影在线播放| 久久综合久久鬼色| 在线免费一区三区| 国产一区二区三区综合| 亚洲免费观看高清完整| 欧美成人猛片aaaaaaa| 99热精品一区二区| 久久电影国产免费久久电影| 一区在线观看免费| 精品国产乱码久久久久久1区2区| 一本大道久久精品懂色aⅴ| 久久成人久久鬼色| 亚洲激情在线激情| 久久精品视频在线看| 欧美色手机在线观看| 成人午夜激情在线| 狠狠色丁香久久婷婷综合_中| 一区二区三区在线免费| 欧美精品一区二区三| 在线日韩一区二区| www..com久久爱| 国产黄色成人av| 美女视频第一区二区三区免费观看网站| 中文字幕在线播放不卡一区| 欧美成人性战久久| 欧美一区二区三区视频在线观看| 99久久国产免费看| 成人av影视在线观看| 国产乱国产乱300精品| 婷婷久久综合九色综合绿巨人| 亚洲免费成人av| 亚洲免费色视频| 中文字幕日韩av资源站| 中文字幕第一区二区| 久久午夜羞羞影院免费观看| 精品久久久久久久久久久院品网| 欧美肥妇bbw| 欧美精品电影在线播放| 欧美综合久久久| 色视频一区二区| 一本一本久久a久久精品综合麻豆| caoporm超碰国产精品| 成人性视频网站| 日韩美女视频一区| 国产精品国产三级国产专播品爱网 | 欧美精品一区二区精品网| 在线观看视频欧美| 午夜伦理一区二区| 午夜电影一区二区| 日韩va欧美va亚洲va久久| 性做久久久久久免费观看欧美| 亚洲激情自拍视频| 无码av免费一区二区三区试看 | 日本三级亚洲精品| 日日夜夜精品视频天天综合网| 日韩制服丝袜av| 日本不卡一区二区三区| 老汉av免费一区二区三区| 精品一区二区三区免费播放 | 天堂va蜜桃一区二区三区漫画版| 日本不卡中文字幕| 国产传媒日韩欧美成人| 极品销魂美女一区二区三区| 韩国一区二区三区| 国产精品一色哟哟哟| 不卡高清视频专区| 一本到高清视频免费精品| 欧美日韩激情一区| 成人黄页毛片网站| 欧美另类z0zxhd电影| 1000精品久久久久久久久| 亚洲品质自拍视频| 午夜影院在线观看欧美| 蜜臀精品一区二区三区在线观看 | 久久久亚洲精华液精华液精华液 | 一本一道久久a久久精品| 欧美日免费三级在线| 欧美成人三级电影在线| 亚洲精品日韩综合观看成人91| 91在线视频在线| 日韩美女视频在线| 亚洲精品菠萝久久久久久久| 99re这里都是精品| 国产精品免费人成网站| 国产91在线|亚洲| 国产精品超碰97尤物18| 欧美美女一区二区在线观看| 欧美精品一区二区三区在线播放 | 一区二区视频免费在线观看| 成人午夜在线播放| 亚洲欧洲精品天堂一级| 色综合久久中文综合久久牛| 国产日韩欧美精品电影三级在线| 久久国产精品露脸对白| 欧美电视剧在线观看完整版| 久久精品国内一区二区三区| 国产亚洲一区二区三区四区| 国产一区二区在线影院| 久久久国际精品| 国产69精品一区二区亚洲孕妇| 成人a免费在线看| 亚洲欧美日韩精品久久久久| 久久久九九九九| 国产精品影音先锋| 国产欧美日韩三级| 国产中文一区二区三区| 日韩一区二区电影| 欧美这里有精品| 欧美女孩性生活视频| 中文字幕高清不卡| 国产在线精品免费| 日韩亚洲欧美高清| 亚洲夂夂婷婷色拍ww47| 成人毛片在线观看| 久久久一区二区| 久久国产尿小便嘘嘘尿| 欧美一卡二卡三卡四卡| 亚洲大片精品永久免费| 91麻豆国产福利精品| 亚洲欧美一区二区在线观看| 国产69精品久久99不卡| 久久亚洲精品国产精品紫薇| 韩国午夜理伦三级不卡影院| 欧美电影免费观看高清完整版在| 日韩精品一二三四|