亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? faq.html

?? libsvm-2.84.rar
?? HTML
?? 第 1 頁 / 共 4 頁
字號:
<html>
<head>
<title>LIBSVM FAQ</title>
</head>
<body bgcolor="#ffffcc">

<a name="_TOP"><b><h1><a
href=http://www.csie.ntu.edu.tw/~cjlin/libsvm>LIBSVM</a>  FAQ </h1></b></a>
<b>last modified : </b>
Sun,  1 Apr 2007 00:31:43 GMT
<class="categories">
<li><a
href="#_TOP">All Questions</a>(57)</li>
<ul><b>
<li><a
href="#/Q1:_Some_courses_which_have_used_libsvm_as_a_tool">Q1:_Some_courses_which_have_used_libsvm_as_a_tool</a>(1)</li>
<li><a
href="#/Q2:_Installation_and_running_the_program">Q2:_Installation_and_running_the_program</a>(8)</li>
<li><a
href="#/Q3:_Data_preparation">Q3:_Data_preparation</a>(3)</li>
<li><a
href="#/Q4:_Training_and_prediction">Q4:_Training_and_prediction</a>(28)</li>
<li><a
href="#/Q5:_Probability_outputs">Q5:_Probability_outputs</a>(3)</li>
<li><a
href="#/Q6:_Graphic_interface">Q6:_Graphic_interface</a>(3)</li>
<li><a
href="#/Q7:_Java_version_of_libsvm">Q7:_Java_version_of_libsvm</a>(4)</li>
<li><a
href="#/Q8:_Python_interface">Q8:_Python_interface</a>(5)</li>
<li><a
href="#/Q9:_MATLAB_interface">Q9:_MATLAB_interface</a>(2)</li>
</b></ul>
</li>

<ul><ul class="headlines">
<li class="headlines_item"><a href="#faq1">Some courses which have used libsvm as a tool</a></li>
<li class="headlines_item"><a href="#f201">Where can I find documents of libsvm ?</a></li>
<li class="headlines_item"><a href="#f202">What are changes in previous versions?</a></li>
<li class="headlines_item"><a href="#f203">I would like to cite libsvm. Which paper should I cite ?   </a></li>
<li class="headlines_item"><a href="#f204">I would like to use libsvm in my software. Is there any license problem?</a></li>
<li class="headlines_item"><a href="#f205">Is there a repository of additional tools based on libsvm?</a></li>
<li class="headlines_item"><a href="#f206">On unix machines, I got "error in loading shared libraries" or "cannot open shared object file." What happened ? </a></li>
<li class="headlines_item"><a href="#f207">I have modified the source and would like to build the graphic interface "svm-toy" on MS windows. How should I do it ?</a></li>
<li class="headlines_item"><a href="#f208">I am an MS windows user but why only one (SVM_toy) of those precompiled .exe actually runs ?  </a></li>
<li class="headlines_item"><a href="#f301">Why sometimes not all attributes of a data appear in the training/model files ?</a></li>
<li class="headlines_item"><a href="#f302">What if my data are non-numerical ?</a></li>
<li class="headlines_item"><a href="#f303">Why do you consider sparse format ? Will the training of dense data be much slower ?</a></li>
<li class="headlines_item"><a href="#f401">The output of training C-SVM is like the following. What do they mean?</a></li>
<li class="headlines_item"><a href="#f402">Can you explain more about the model file?</a></li>
<li class="headlines_item"><a href="#f403">Should I use float or double to store numbers in the cache ?</a></li>
<li class="headlines_item"><a href="#f404">How do I choose the kernel?</a></li>
<li class="headlines_item"><a href="#f405">Does libsvm have special treatments for linear SVM?</a></li>
<li class="headlines_item"><a href="#f406">The number of free support vectors is large. What should I do?</a></li>
<li class="headlines_item"><a href="#f407">Should I scale training and testing data in a similar way?</a></li>
<li class="headlines_item"><a href="#f408">Does it make a big difference  if I scale each attribute to [0,1] instead of [-1,1]?</a></li>
<li class="headlines_item"><a href="#f409">The prediction rate is low. How could I improve it?</a></li>
<li class="headlines_item"><a href="#f410">My data are unbalanced. Could libsvm handle such problems?</a></li>
<li class="headlines_item"><a href="#f411">What is the difference between nu-SVC and C-SVC?</a></li>
<li class="headlines_item"><a href="#f412">The program keeps running (without showing any output). What should I do?</a></li>
<li class="headlines_item"><a href="#f413">The program keeps running (with output, i.e. many dots). What should I do?</a></li>
<li class="headlines_item"><a href="#f414">The training time is too long. What should I do?</a></li>
<li class="headlines_item"><a href="#f415">How do I get the decision value(s)?</a></li>
<li class="headlines_item"><a href="#f4151">How do I get the distance between a point and the hyperplane?</a></li>
<li class="headlines_item"><a href="#f416">On 32-bit machines, if I use a large cache (i.e. large -m) on a linux machine, why sometimes I get "segmentation fault ?"</a></li>
<li class="headlines_item"><a href="#f417">How do I disable screen output of svm-train and svm-predict ?</a></li>
<li class="headlines_item"><a href="#f418">I would like to use my own kernel but find out that there are two subroutines for kernel evaluations: k_function() and kernel_function(). Which one should I modify ?</a></li>
<li class="headlines_item"><a href="#f419">What method does libsvm use for multi-class SVM ? Why don't you use the "1-against-the rest" method ?</a></li>
<li class="headlines_item"><a href="#f420">After doing cross validation, why there is no model file outputted ?</a></li>
<li class="headlines_item"><a href="#f421">I would like to try different random partition for cross validation, how could I do it ?</a></li>
<li class="headlines_item"><a href="#f422">I would like to solve L2-SVM (i.e., error term is quadratic). How should I modify the code ?</a></li>
<li class="headlines_item"><a href="#f424">How do I choose parameters for one-class svm as training data are in only one class?</a></li>
<li class="headlines_item"><a href="#f427">Why the code gives NaN (not a number) results?</a></li>
<li class="headlines_item"><a href="#f428">Why on windows sometimes grid.py fails?</a></li>
<li class="headlines_item"><a href="#f429">Why grid.py/easy.py sometimes generates the following warning message?</a></li>
<li class="headlines_item"><a href="#f430">Why the sign of predicted labels and decision values are sometimes reversed?</a></li>
<li class="headlines_item"><a href="#f425">Why training a probability model (i.e., -b 1) takes longer time</a></li>
<li class="headlines_item"><a href="#f426">Why using the -b option does not give me better accuracy?</a></li>
<li class="headlines_item"><a href="#f427">Why using svm-predict -b 0 and -b 1 gives different accuracy values?</a></li>
<li class="headlines_item"><a href="#f501">How can I save images drawn by svm-toy?</a></li>
<li class="headlines_item"><a href="#f502">I press the "load" button to load data points but why svm-toy does not draw them ?</a></li>
<li class="headlines_item"><a href="#f503">I would like svm-toy to handle more than three classes of data, what should I do ?</a></li>
<li class="headlines_item"><a href="#f601">What is the difference between Java version and C++ version of libsvm?</a></li>
<li class="headlines_item"><a href="#f602">Is the Java version significantly slower than the C++ version?</a></li>
<li class="headlines_item"><a href="#f603">While training I get the following error message: java.lang.OutOfMemoryError. What is wrong?</a></li>
<li class="headlines_item"><a href="#f604">Why you have the main source file svm.m4 and then transform it to svm.java?</a></li>
<li class="headlines_item"><a href="#f702">On MS windows, why does python fail to load the pyd file?</a></li>
<li class="headlines_item"><a href="#f703">How to modify the python interface on MS windows and rebuild the .pyd file ?</a></li>
<li class="headlines_item"><a href="#f704">Except the python-C++ interface provided, could I use Jython to call libsvm ?</a></li>
<li class="headlines_item"><a href="#f705">How could I install the python interface on Mac OS? </a></li>
<li class="headlines_item"><a href="#f706">I typed "make" on a unix system, but it says "Python.h: No such file or directory?"</a></li>
<li class="headlines_item"><a href="#f801">I compile the MATLAB interface without problem, but why errors occur while running it?</a></li>
<li class="headlines_item"><a href="#f802">Does the MATLAB interface provide a function to do scaling?</a></li>
</ul></ul>


<hr size="5" noshade />
<p/>
  
<a name="/Q1:_Some_courses_which_have_used_libsvm_as_a_tool"></a>
<a name="faq1"><b>Q: Some courses which have used libsvm as a tool</b></a>
<br/>                                                                                
<ul>
<li><a href=http://lmb.informatik.uni-freiburg.de/lectures/svm_seminar/>Institute for Computer Science,           
Faculty of Applied Science, University of Freiburg, Germany 
</a>
<li> <a href=http://www.cs.vu.nl/~elena/ml.html>
Division of Mathematics and Computer Science. 
Faculteit der Exacte Wetenschappen 
Vrije Universiteit, The Netherlands. </a>
<li>
<a href=http://www.cae.wisc.edu/~ece539/matlab/>
Electrical and Computer Engineering Department, 
University of Wisconsin-Madison 
</a>
<li>
<a href=http://www.hpl.hp.com/personal/Carl_Staelin/cs236601/project.html>
Technion (Israel Institute of Technology), Israel.
<li>
<a href=http://www.cise.ufl.edu/~fu/learn.html>
Computer and Information Sciences Dept., University of Florida</a>
<li>
<a href=http://www.uonbi.ac.ke/acad_depts/ics/course_material/machine_learning/ML_and_DM_Resources.html>
The Institute of Computer Science,
University of Nairobi, Kenya.</a>
<li>
<a href=http://cerium.raunvis.hi.is/~tpr/courseware/svm/hugbunadur.html>
Applied Mathematics and Computer Science, University of Iceland.
<li>
<a href=http://chicago05.mlss.cc/tiki/tiki-read_article.php?articleId=2>
SVM tutorial in machine learning
summer school, University of Chicago, 2005.
</a>
</ul>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f201"><b>Q: Where can I find documents of libsvm ?</b></a>
<br/>                                                                                
<p>
In the package there is a README file which 
details all options, data format, and library calls.
The model selection tool and the python interface
have a separate README under the directory python.
The guide
<A HREF="http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf">
A practical guide to support vector classification
</A> shows beginners how to train/test their data.
The paper <a href="http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf">LIBSVM
: a library for support vector machines</a> discusses the implementation of
libsvm in detail.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f202"><b>Q: What are changes in previous versions?</b></a>
<br/>                                                                                
<p>See <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm/log">the change log</a>.

<p> You can download earlier versions 
<a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm/oldfiles">here</a>.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f203"><b>Q: I would like to cite libsvm. Which paper should I cite ?   </b></a>
<br/>                                                                                
<p>
Please cite the following document:
<p>
Chih-Chung Chang and Chih-Jen Lin, LIBSVM
: a library for support vector machines, 2001.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
<p>
The bibtex format is as follows
<pre>
@Manual{CC01a,
  author =	 {Chih-Chung Chang and Chih-Jen Lin},
  title =	 {{LIBSVM}: a library for support vector machines},
  year =	 {2001},
  note =	 {Software available at \url{http://www.csie.ntu.edu.tw/~cjlin/libsvm}}
}
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f204"><b>Q: I would like to use libsvm in my software. Is there any license problem?</b></a>
<br/>                                                                                
<p>
The libsvm license ("the modified BSD license")
is compatible with many
free software licenses such as GPL. Hence, it is very easy to
use libsvm in your software.
It can also be used in commercial products.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f205"><b>Q: Is there a repository of additional tools based on libsvm?</b></a>
<br/>                                                                                
<p>
Yes, see <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvmtools">libsvm 
tools</a>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f206"><b>Q: On unix machines, I got "error in loading shared libraries" or "cannot open shared object file." What happened ? </b></a>
<br/>                                                                                

<p>
This usually happens if you compile the code
on one machine and run it on another which has incompatible
libraries.
Try to recompile the program on that machine or use static linking.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f207"><b>Q: I have modified the source and would like to build the graphic interface "svm-toy" on MS windows. How should I do it ?</b></a>
<br/>                                                                                

<p>
Build it as a project by choosing "Win32 Project."
On the other hand, for "svm-train" and "svm-predict"
you want to choose "Win32 Console Project."
After libsvm 2.5, you can also use the file Makefile.win.
See details in README.


<p>
If you are not using Makefile.win and see the following 
link error
<pre>
LIBCMTD.lib(wwincrt0.obj) : error LNK2001: unresolved external symbol
_wWinMain@16
</pre>
you may have selected a wrong project type.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f208"><b>Q: I am an MS windows user but why only one (SVM_toy) of those precompiled .exe actually runs ?  </b></a>
<br/>                                                                                

<p>
You need to open a command window 
and type  svmtrain.exe to see all options.
Some examples are in README file.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f301"><b>Q: Why sometimes not all attributes of a data appear in the training/model files ?</b></a>
<br/>                                                                                
<p>
libsvm uses the so called "sparse" format where zero
values do not need to be stored. Hence a data with attributes
<pre>
1 0 2 0
</pre>
is represented as
<pre>
1:1 3:2
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f302"><b>Q: What if my data are non-numerical ?</b></a>
<br/>                                                                                
<p>
Currently libsvm supports only numerical data.
You may have to change non-numerical data to 
numerical. For example, you can use several
binary attributes to represent a categorical
attribute.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f303"><b>Q: Why do you consider sparse format ? Will the training of dense data be much slower ?</b></a>
<br/>                                                                                
<p>
This is a controversial issue. The kernel
evaluation (i.e. inner product) of sparse vectors is slower 
so the total training time can be at least twice or three times
of that using the dense format.
However, we cannot support only dense format as then we CANNOT
handle extremely sparse cases. Simplicity of the code is another
concern. Right now we decide to support
the sparse format only.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q4:_Training_and_prediction"></a>
<a name="f401"><b>Q: The output of training C-SVM is like the following. What do they mean?</b></a>
<br/>                                                                                
<br>optimization finished, #iter = 219
<br>nu = 0.431030
<br>obj = -100.877286, rho = 0.424632
<br>nSV = 132, nBSV = 107
<br>Total nSV = 132
<p>
obj is the optimal objective value of the dual SVM problem.
rho is the bias term in the decision function
sgn(w^Tx - rho).
nSV and nBSV are number of support vectors and bounded support
vectors (i.e., alpha_i = C). nu-svm is a somewhat equivalent
form of C-SVM where C is replaced by nu. nu simply shows the

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日本一区二区成人在线| 日韩一区二区三区在线观看| 亚洲国产毛片aaaaa无费看| 欧美成人精品福利| 在线观看成人免费视频| 国产99久久久国产精品潘金| 日本最新不卡在线| 国产精品国产自产拍在线| 日韩欧美亚洲一区二区| 欧美三区在线观看| 91在线porny国产在线看| 国产精品综合久久| 美日韩一级片在线观看| 亚洲午夜一二三区视频| 国产精品国产精品国产专区不片| 欧美成人一区二区三区 | 欧美日韩1234| 91丨九色丨国产丨porny| 国产成人精品三级| 国产精品77777| 韩日av一区二区| 久久99精品久久久久久国产越南| 婷婷开心久久网| 亚洲一区二区三区四区五区中文| 一区在线播放视频| 国产精品美女久久久久aⅴ | 欧美色网一区二区| 色婷婷av久久久久久久| 日韩欧美在线网站| 国内久久精品视频| 麻豆免费精品视频| 免费人成黄页网站在线一区二区 | 亚洲成a人v欧美综合天堂下载| 1024国产精品| 亚洲天堂av一区| 国产精品国产精品国产专区不片| 国产清纯白嫩初高生在线观看91 | 精品福利一二区| 精品黑人一区二区三区久久| 日韩免费福利电影在线观看| 日韩一区二区三区在线| 日韩欧美亚洲一区二区| 欧美电视剧在线看免费| 久久影院视频免费| 国产欧美综合在线| 国产精品久久久久四虎| 中文字幕制服丝袜一区二区三区 | 国产欧美日韩中文久久| 中文字幕av一区二区三区高| 国产精品不卡在线观看| 国产精品久久久久久久久快鸭 | 亚洲大尺度视频在线观看| 亚洲国产一区二区三区| 美女网站视频久久| 国产高清亚洲一区| 一本色道久久加勒比精品| 欧美性色欧美a在线播放| 欧美精选在线播放| 日韩精品一区二区在线| 久久精品夜色噜噜亚洲a∨| 国产精品久久久久久久午夜片| 亚洲视频免费看| 视频一区视频二区中文| 久88久久88久久久| fc2成人免费人成在线观看播放 | 国产成人精品免费在线| 色哟哟一区二区在线观看| 51午夜精品国产| 久久久亚洲高清| 亚洲高清免费观看高清完整版在线观看 | 国产成人自拍网| 91小视频在线| 日韩一区二区三区电影在线观看| 久久蜜桃av一区二区天堂| 亚洲视频一二区| 日韩电影在线一区二区三区| 北条麻妃国产九九精品视频| 欧美性极品少妇| 欧美一区二区三区免费大片| 99精品国产视频| 911精品国产一区二区在线| 欧美一区中文字幕| 国产色婷婷亚洲99精品小说| 亚洲制服丝袜在线| 国产综合色产在线精品| 欧美视频中文字幕| 国产女同互慰高潮91漫画| 亚洲一区二区三区爽爽爽爽爽| 狠狠色丁香婷综合久久| 91久久精品日日躁夜夜躁欧美| 精品国产污污免费网站入口| 一区二区三区欧美视频| 国产裸体歌舞团一区二区| 在线观看91精品国产入口| 久久精品水蜜桃av综合天堂| 亚洲va国产天堂va久久en| 成人免费看黄yyy456| 欧美精品三级在线观看| 国产精品理伦片| 国内精品自线一区二区三区视频| 欧美三级在线看| 亚洲天天做日日做天天谢日日欢| 激情文学综合网| 国产乱码精品一区二区三区五月婷| 国产精品白丝av| 91精品视频网| 亚洲成年人影院| 色综合亚洲欧洲| 国产女人aaa级久久久级| 麻豆精品国产传媒mv男同 | 91亚洲午夜精品久久久久久| 久久伊人蜜桃av一区二区| 日韩在线播放一区二区| 91精品1区2区| 中文字幕在线视频一区| 高清不卡一二三区| 国产视频亚洲色图| 韩国在线一区二区| 欧美mv和日韩mv的网站| 蜜桃一区二区三区在线观看| 7777女厕盗摄久久久| 亚洲gay无套男同| 欧美三级日韩在线| 亚洲影院久久精品| 91福利视频在线| 一级女性全黄久久生活片免费| 96av麻豆蜜桃一区二区| 中文字幕高清不卡| 国产成人午夜精品影院观看视频| 精品久久久久一区| 久久99精品国产91久久来源| 日韩欧美不卡一区| 美洲天堂一区二卡三卡四卡视频 | 国产精品久久久久久久蜜臀| 成人听书哪个软件好| 欧美激情综合五月色丁香 | 在线看日韩精品电影| 亚洲激情五月婷婷| 色婷婷国产精品综合在线观看| 亚洲欧美一区二区三区久本道91 | 2020日本不卡一区二区视频| 国内精品国产成人| 日本一区二区三区四区在线视频| 国产成人精品一区二区三区网站观看| 久久影院电视剧免费观看| 国产成人亚洲综合色影视| 国产精品日产欧美久久久久| 成人18精品视频| 亚洲精品日韩综合观看成人91| 91久久线看在观草草青青| 午夜欧美一区二区三区在线播放| 91精品国产黑色紧身裤美女| 激情都市一区二区| 国产目拍亚洲精品99久久精品 | 国产偷国产偷精品高清尤物| 成人午夜短视频| 亚洲国产毛片aaaaa无费看 | 久久草av在线| 成人综合在线网站| 久久婷婷久久一区二区三区| 国产又粗又猛又爽又黄91精品| 国产精品激情偷乱一区二区∴| 色素色在线综合| 青青草97国产精品免费观看 | 狠狠色丁香久久婷婷综合丁香| 亚洲精品一区二区三区影院| 成人中文字幕合集| 性欧美疯狂xxxxbbbb| 精品国产乱码久久久久久夜甘婷婷 | 91丨九色porny丨蝌蚪| 午夜精品一区在线观看| 久久久久国产免费免费| 色综合久久久网| 日本三级韩国三级欧美三级| 久久九九久久九九| 欧美在线观看一区| 国产精品一区二区在线观看不卡 | 福利电影一区二区| 亚洲高清视频在线| 国产欧美一区二区三区沐欲| 色婷婷综合激情| 国产在线播放一区| 亚洲国产日韩a在线播放性色| 精品福利一区二区三区| 色婷婷国产精品综合在线观看| 加勒比av一区二区| 亚洲一二三四区| 国产亚洲一区二区三区| 欧美亚一区二区| 国产成人av电影免费在线观看| 首页国产丝袜综合| 国产精品三级视频| 精品国产91乱码一区二区三区 | thepron国产精品| 老司机免费视频一区二区三区| 中文字幕一区二区三区不卡| 欧美成人官网二区| 欧美日韩国产电影| 色综合天天视频在线观看| 国产一区二区毛片|