亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? readme

?? libsvm-2.84.rar
??
字號:
Python-to-libsvm interfaceIntroduction============Python (http://www.python.org/) is a programming language suitable forrapid development. This python-to-libsvm interface is developed so users can easily experiment with libsvm using python. The interface is developed with SWIG, The original idea and the SWIG interface file was provided by Carl Staelin(staelin@hpl.hp.com) from HP Labs. The interface was integrated into thelibsvm package by Li-lun Wang (llwang@infor.org) from National TaiwanUniversity. Chih-Chung Chang (b4506055@csie.ntu.edu.tw) from NationalTaiwan University also contributed a lot of useful suggestions and help.Installation============The build process for the various Unix systems is as follows:Before you build the module, you need to find out the python includedirectory, which is typically located at /usr/local/include/python2.4 or/usr/include/python. You can set the variable PYTHON_INCLUDEDIR inMakefile manually or use something like the following:	make PYTHON_INCLUDEDIR=/usr/include/python allAlthough the interface is generated by SWIG, it is not necessary tohave SWIG installed because the generated svmc_wrap.c is included inthis package (It was generated using SWIG 1.3.31). If you prefergenerating the interface with SWIG on your own, you can simply removethe generated files with	make morecleanbefore building the module. Note that SWIG version > 1.3.7 should be used.When the build process completes, a shared object called svmc.so will becreated.For win32 systems, the shared library svmc.pyd is ready in thedirectory windows/python. You need to copy it to this directory.  The.pyd file depends on different versions of python, so you may have tore-make it by following the instruction of building windows binariesin libsvm README.Usage=====To use the module, the files svm.py and the shared library (namely svmc.soor svmc.pyd) must be placed in the current directory, the python librarydirectory, or the directory where the environment variable PYTHONPATHpoints to. The user then imports everything in svm.py to use libsvm inpython:	from svm import *There are three classes in svm.py, namely svm_parameter, svm_problem, andsvm_model.svm_parameter is used to set the parameters of the trainingprocess. The attributes in svm_parameter include svm_type,kernel_type, degree, gamma, coef0, nu, cache_size, C, eps, p,shrinking, nr_weight, weight_label, and weight. Available svm typesinclude C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, and NU_SVR. Availablekernel types include LINEAR, POLY, RBF, and SIGMOID. The user cansetup the parameters with the constructor and keyword arguments:	param = svm_parameter(kernel_type = LINEAR, C = 10)The user can also modify the parameters later:	param.kernel_type = RBFsvm_problem is used to hold the training data for the problem. Theconstructor takes two arguments; the first of them is the list of labels,and the other is the list of samples. For example	prob = svm_problem([1,-1],[[1,0,1],[-1,0,-1]])or equivalently	prob = svm_problem([1,-1],[{1:1,3:1},{1:-1,3:-1}])For precomputed kernels, the first element of each instance must bethe ID. For example,	samples = [[1, 0, 0, 0, 0], [2, 0, 1, 0, 1], [3, 0, 0, 1, 1], [4, 0, 1, 1, 2]]	problem = svm_problem(labels, samples);For more details of precomputed kernels, please check README of theparent directory.Once the parameter and problem are ready, we can construct the model:	m = svm_model(prob, param)To conduct n-fold cross validation; predicted labels in the validationprocess are returned.	target = cross_validation(prob, param, n)To predict a new sample with the model:	r = m.predict([1, 1, 1])To obtain decision values of predicting a sample:	d = m.predict_values([1, 1, 1])	To predict a new sample and obtain probability estimates;return value is a dict that maps labels to probabilities.	prd, prb = m.predict_probability([1, 1, 1])	sample of prd : 1.0	sample of prb : {1:0.6, -1:0.4}To obtain sigma of the probability density function for regression;see ../README for the definition of the function.	sigma = m.get_svr_probability()To obtain the probability density function for regression; see../README for the definition of the function.	pdf = m.get_svr_pdf()	probability = pdf(z)To save the model to a file:	m.save('test.model')and to load the model from a file:	m = svm_model('test.model')Examples========There are two examples in this package. The one is svm_test.py, and theother is test_cross_validation.py.svm_test.py tests various kernels on a three-class problem withC-SVM. It also demonstrates how to obtain decision values andprobability estimates.test_cross_validation.py demonstrates loading data from a file anddoes a ten-fold cross validation on the heart_scale dataset. It makesuse of cross_validation.py which calls the C++ cross validationsubroutine.

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日本一区二区三区在线观看| 精品美女一区二区| 欧美久久一二三四区| 日韩欧美激情一区| 中文字幕av一区二区三区免费看| 国产精品黄色在线观看| 天堂在线一区二区| 不卡的av在线| 欧美mv日韩mv国产| 午夜不卡在线视频| 成人精品gif动图一区| 91精品免费在线观看| 中文字幕在线不卡国产视频| 日韩av在线免费观看不卡| 波波电影院一区二区三区| 欧美一二三四在线| 夜夜嗨av一区二区三区网页| 国产suv精品一区二区883| 欧美日韩国产成人在线91| 亚洲欧洲www| 丁香婷婷综合激情五月色| 日韩精品一区二区三区swag| 亚洲动漫第一页| 欧美亚洲国产一区在线观看网站| 久久久久一区二区三区四区| 麻豆91在线播放| 欧美成人三级电影在线| 久久精品国产一区二区| 日韩欧美中文字幕精品| 蜜臀av性久久久久蜜臀aⅴ流畅| 色八戒一区二区三区| 亚洲另类在线视频| 色综合中文字幕国产| 国产午夜精品福利| 国产xxx精品视频大全| 中文字幕巨乱亚洲| 色综合久久88色综合天天| 亚洲免费色视频| 3d成人动漫网站| 精品一区二区三区在线视频| 欧美电影精品一区二区| 成人免费视频播放| 亚洲线精品一区二区三区八戒| 欧美三级日韩三级国产三级| 奇米精品一区二区三区在线观看 | av成人老司机| 亚洲午夜久久久久| 精品成人一区二区三区| proumb性欧美在线观看| 日韩成人一区二区| 国产欧美视频在线观看| 精品视频在线视频| 国产精品77777竹菊影视小说| 欧美激情中文字幕一区二区| 色婷婷国产精品| 国产精品911| 日韩成人一级大片| 亚洲精品视频一区二区| 精品久久一区二区三区| 久久久久久麻豆| 欧美一区二区三区小说| 欧美在线视频不卡| 成人动漫在线一区| 国产一区二区伦理片| 日产欧产美韩系列久久99| 亚洲色欲色欲www| 国产精品国产三级国产aⅴ入口| 日韩欧美一区二区久久婷婷| 欧美人体做爰大胆视频| 欧美主播一区二区三区| 在线欧美日韩精品| 在线影院国内精品| 欧美日韩国产精品成人| 91国产丝袜在线播放| 91视频观看视频| 在线影视一区二区三区| 日本韩国欧美在线| 欧美日韩视频在线观看一区二区三区| 99精品久久久久久| 日本丶国产丶欧美色综合| 在线免费视频一区二区| 欧美男男青年gay1069videost| 欧美综合一区二区三区| 欧美夫妻性生活| 久久看人人爽人人| 亚洲综合网站在线观看| 国产日韩欧美a| 欧美日韩国产在线观看| 国产91丝袜在线播放| 91九色02白丝porn| 18成人在线视频| 成人精品视频网站| 欧美激情一区在线观看| 国产精品自拍三区| 欧美一区2区视频在线观看| 国产精品理伦片| 奇米色777欧美一区二区| 成人黄色av电影| 欧美一区二区性放荡片| 国产婷婷色一区二区三区四区| 久久精品夜色噜噜亚洲a∨| 亚洲乱码一区二区三区在线观看| 亚洲成人精品在线观看| 国产精品18久久久久久久久| 色狠狠色狠狠综合| 久久精品亚洲精品国产欧美| 亚洲精品成人a在线观看| 激情图区综合网| 在线一区二区观看| 欧美激情综合五月色丁香小说| 亚洲va国产va欧美va观看| 激情文学综合网| 久久久久久免费网| 男女男精品视频| 2021国产精品久久精品| 高清国产一区二区| 色88888久久久久久影院按摩 | 欧美在线免费观看视频| 日韩视频一区二区| 久久精品一区四区| 免费久久精品视频| 欧美一级在线视频| 日本伊人精品一区二区三区观看方式| av亚洲精华国产精华精| 欧美韩日一区二区三区| 成人精品免费视频| 一区二区三区在线不卡| 欧美图片一区二区三区| 亚洲精选视频在线| 欧美亚洲一区三区| 老司机精品视频导航| 久久综合色播五月| 日本韩国一区二区三区视频| 亚洲无人区一区| 91精品国产免费| 国产一区二区久久| 国产精品毛片久久久久久| 91丨国产丨九色丨pron| 一区二区三区中文在线| 精品嫩草影院久久| 91蜜桃视频在线| 毛片av一区二区| 亚洲一二三四区不卡| 国产精品二三区| 久久精品亚洲精品国产欧美kt∨| 91精品综合久久久久久| 色婷婷综合久久久久中文一区二区| 狠狠色综合色综合网络| 精品亚洲porn| 国产综合一区二区| 国产成人免费在线视频| 国产盗摄精品一区二区三区在线| 久久成人免费电影| 国产亚洲一区二区三区在线观看| 欧美在线不卡一区| av电影一区二区| 国产精品综合av一区二区国产馆| 亚洲国产色一区| 一区二区在线免费观看| 国产精品美女久久久久aⅴ| 久久综合一区二区| 日韩一区二区在线看| 欧美人与禽zozo性伦| 欧美三级日韩三级| 色噜噜狠狠一区二区三区果冻| 丁香婷婷综合五月| 国产99久久久国产精品免费看| 韩国女主播一区二区三区| 蜜臀av性久久久久蜜臀aⅴ| 视频一区中文字幕国产| 亚洲第一狼人社区| 亚洲大片免费看| 五月天婷婷综合| 日韩不卡在线观看日韩不卡视频| 日韩和欧美的一区| 免费观看在线综合| 久久99国产精品久久99果冻传媒| 丝瓜av网站精品一区二区 | 韩国理伦片一区二区三区在线播放| 亚洲午夜精品在线| 亚洲国产成人tv| 久久 天天综合| 成人免费高清视频在线观看| 国产成人亚洲综合a∨婷婷图片| 国产精品一区二区免费不卡 | 国产精品麻豆久久久| 亚洲一卡二卡三卡四卡五卡| 伊人色综合久久天天| 国产成人亚洲综合a∨婷婷图片 | 亚洲男人的天堂一区二区| 亚洲超碰97人人做人人爱| 九色|91porny| 欧洲视频一区二区| 久久亚洲精品小早川怜子| 一区二区三区色| 久久99精品一区二区三区| 91麻豆精东视频| 国产三级精品三级在线专区| 亚洲成在人线免费| 91视视频在线直接观看在线看网页在线看 |