?? pidmotor.c
字號(hào):
/*------------------------------------------------------------------*-
PID_Motor.c (v1.01)
------------------------------------------------------------------
Small library for PID control of a DC motor.
For C515c microcontroller.
The set point (required speed) is read via a potentiometer
and on-chip ADC.
The current speed is read via an optical encoder. The pulses
from the encoder are counted using T0.
The new speed is set by PWM using the on-chip capture-compare
unit (Timer 2).
COPYRIGHT
---------
This code is from the book:
PATTERNS FOR TIME-TRIGGERED EMBEDDED SYSTEMS by Michael J. Pont
[Pearson Education, 2001; ISBN: 0-201-33138-1].
This code is copyright (c) 2001 by Michael J. Pont.
See book for copyright details and other information.
-*------------------------------------------------------------------*/
#include "Main.h"
#include "Port.h"
#include "PIDMotor.h"
#include "PC_O_in.h"
// ------ Public constants -----------------------------------------
extern const char code CHAR_MAP_G[10];
// ------ Private function prototypes ------------------------------
static tByte PID_MOTOR_Get_Required_Speed(void);
static tByte PID_MOTOR_Read_Current_Speed(void);
static void PID_MOTOR_Set_New_PWM_Output(const tByte);
// ------ Private constants ----------------------------------------
#define PULSE_HIGH (0)
#define PULSE_LOW (1)
// PID parameters
#define PID_PROPORTIONAL (5)
#define PID_INTEGRAL (50)
#define PID_DIFFERENTIAL (50)
// ------ Private variables ----------------------------------------
// Used for demo purposes only
tWord Ticks = 0;
// Stores the latest count value
static tByte Pulse_count_G;
// Data to be copied to the serial port
static char PID_MOTOR_data_G[50] = {" "};
// Measured speed, required speed and controller output variables
static tByte Speed_measured_G = 45;
static tByte Speed_required_G = 50;
static tByte Controller_output_G = 128;
static int Old_error_G = 0;
static int Sum_G = 0;
/*------------------------------------------------------------------*-
PID_MOTOR_Init()
Prepare for UD motor control.
-*------------------------------------------------------------------*/
void PID_MOTOR_Init(void)
{
// -----------------------------------------------------------
// Set up the initial data to be sent to the PC via RS-232
// -----------------------------------------------------------
char* pScreen_Data = "Cur Des PWM \n";
tByte c;
for (c = 0; c < 30; c++)
{
PID_MOTOR_data_G[c] = pScreen_Data[c];
}
// -----------------------------------------------------------
// Set up the A-D converter
// (used to measure the 'set point' (the desired motor speed)
// -----------------------------------------------------------
// Select internally-triggered single conversion
// Reading from P6.0 (single channel)
ADCON0 = 0xC0; // Mask bits 0 - 5 to 0
// Select appropriate prescalar ratio: see manual for details
ADCON1 = 0x80; // Make bit 7 = 1 : Prescaler ratio=8
// -----------------------------------------------------------
// Set up the PWM output (Cap Com) unit - T2
// (used to set the desired motor speed)
// -----------------------------------------------------------
// ---------- T2 Mode ---------------------------
// Mode 1 = Timerfunction
// Prescaler: Fcpu/6
// ---------- T2 reload mode selection ----------
// Mode 0 = auto-reload upon timer overflow
// Preset the timer register with autoreload value ! 0xFF00;
TL2 = 0x00;
TH2 = 0xFF;
// ---------- T2 general compare mode ----------
// Mode 0 for all channels
T2CON |= 0x11;
// ---------- T2 general interrupts ------------
// Timer 2 overflow interrupt is disabled
ET2=0;
// Timer 2 external reload interrupt is disabled
EXEN2=0;
// ---------- Compare/capture Channel 0 ---------
// Disabled??
// Set Compare Register CRC on: 0xFF00;
CRCL = 0x00;
CRCH = 0xFF;
// CC0/ext3 interrupt is disabled
EX3=0;
// ---------- Compare/capture Channel 1 ---------
// Compare enabled
// Set Compare Register CC1 on: 0xFF80;
CCL1 = 0x80;
CCH1 = 0xFF;
// CC1/ext4 interrupt is disabled
EX4=0;
// ---------- Compare/capture Channel 2 ---------
// Disabled
// Set Compare Register CC2 on: 0x0000;
CCL2 = 0x00;
CCH2 = 0x00;
// CC2/ext5 interrupt is disabled
EX5=0;
// ---------- Compare/capture Channel 3 ---------
// Disabled
// Set Compare Register CC3 on: 0x0000;
CCL3 = 0x00;
CCH3 = 0x00;
// CC3/ext6 interrupt is disabled
EX6=0;
// Set all above mentioned modes for channel 0-3
CCEN = 0x08;
// -----------------------------------------------------------
// Count pulses on Pin 3.5 [software only]
// (used to measure the current motor speed)
// -----------------------------------------------------------
Pulse_count_pin = 1;
Pulse_count_G = 0;
}
/*------------------------------------------------------------------*-
PID_MOTOR_Control_Motor()
The main motor control function.
-*------------------------------------------------------------------*/
void PID_MOTOR_Control_Motor(void)
{
int Error;
int Control_i;
// Get the current speed value (0-255)
Speed_measured_G = PID_MOTOR_Read_Current_Speed();
// Get the desired speed value (0-255)
Speed_required_G =
PID_MOTOR_Get_Required_Speed();
if (++Ticks == 100)
{
Speed_required_G = 200;
}
// Difference between required and actual speed (0-255)
Error = Speed_required_G - Speed_measured_G;
// Proportional term
Control_i = Controller_output_G + (Error / PID_PROPORTIONAL);
// Integral term [SET TO 0 IF NOT REQUIRED]
if (PID_INTEGRAL)
{
Sum_G += Error;
Control_i += (Sum_G / (1 + PID_INTEGRAL));
}
// Differential term [SET TO 0 IF NOT REQUIRED]
if (PID_DIFFERENTIAL)
{
Control_i += (Error - Old_error_G) / (1 + PID_DIFFERENTIAL);
// Store error value
Old_error_G = Error;
}
// Adjust to 8-bit range
if (Control_i > 255)
{
Control_i = 255;
Sum_G -= Error; // Windup protection
}
if (Control_i < 0)
{
Control_i = 0;
Sum_G -= Error; // Windup protection
}
// Convert to required 8-bit format
Controller_output_G = (tByte) Control_i;
// Update the PWM setting
PID_MOTOR_Set_New_PWM_Output(Controller_output_G);
// Update display
PID_MOTOR_data_G[4] = CHAR_MAP_G[Speed_measured_G / 100];
PID_MOTOR_data_G[5] = CHAR_MAP_G[(Speed_measured_G % 100) / 10];
PID_MOTOR_data_G[6] = CHAR_MAP_G[Speed_measured_G % 10];
PID_MOTOR_data_G[12] = CHAR_MAP_G[Speed_required_G / 100];
PID_MOTOR_data_G[13] = CHAR_MAP_G[(Speed_required_G % 100) / 10];
PID_MOTOR_data_G[14] = CHAR_MAP_G[Speed_required_G % 10];
PID_MOTOR_data_G[20] = CHAR_MAP_G[Controller_output_G / 100];
PID_MOTOR_data_G[21] = CHAR_MAP_G[(Controller_output_G % 100) / 10];
PID_MOTOR_data_G[22] = CHAR_MAP_G[Controller_output_G % 10];
PC_LINK_O_Write_String_To_Buffer(PID_MOTOR_data_G);
}
/*------------------------------------------------------------------*-
PID_MOTOR_Get_Required_Speed()
Get the required speed via the Pot and ADC.
-*------------------------------------------------------------------*/
tByte PID_MOTOR_Get_Required_Speed(void)
{
// Take sample from A-D
// Write (value not important) to ADDATL to start conversion
ADDATL = 0x01;
// Wait for conversion to complete
// NOTE: This demo software has no timeout...
while (BSY == 1);
// 10-bit A-D result is now available
// return 8-bit result
return ADDATH;
}
/*------------------------------------------------------------------*-
PID_MOTOR_Set_New_PWM_Output()
Adjust the PWM output value.
-*------------------------------------------------------------------*/
void PID_MOTOR_Set_New_PWM_Output(const tByte Controller_output_G)
{
// Changing value in CCL1 to generate appropriate PWM duty cycle
CCL1 = Controller_output_G;
}
/*------------------------------------------------------------------*-
PID_MOTOR_Read_Current_Speed()
Schedule this function at regular intervals.
Remember: max count is 65536 (16-bit counter)
- it is your responsibility to ensure this count
is not exceeded. Choose an appropriate schedule
interval and allow a margin for error.
For high-frequency pulses, you need to take account of
the fact that the count is stop for a (very brief) period,
to read the counter.
Note: the delay before the first count is taken should
generally be the same as the inter-count interval,
to ensure that the first count is as accurate as possible.
For example, this is OK:
Sch_Add_Task(PID_MOTOR_Read_Current_Speed, 1000, 1000);
While this will give a very low first count:
Sch_Add_Task(PID_MOTOR_Read_Current_Speed, 0, 1000);
-*------------------------------------------------------------------*/
tByte PID_MOTOR_Read_Current_Speed(void)
{
int C;
tByte Count = Pulse_count_G;
Pulse_count_G = 0;
// Normalised: 0 -> 255
C = 9 * ((int) Count - 28);
if (C < 0)
{
C = 0;
}
if (C > 255)
{
C = 255;
}
return (tByte) C;
}
/*------------------------------------------------------------------*-
PID_MOTOR_Poll_Speed_Pulse()
Using software to count falling edges on a specified pin
- T0 is *NOT* used here.
-*------------------------------------------------------------------*/
void PID_MOTOR_Poll_Speed_Pulse(void)
{
static bit Previous_state;
bit Current_state = Pulse_count_pin;
if ((Previous_state == PULSE_HIGH) && (Current_state == PULSE_LOW))
{
Pulse_count_G++;
}
Previous_state = Current_state;
}
/*------------------------------------------------------------------*-
---- END OF FILE -------------------------------------------------
-*------------------------------------------------------------------*/
?? 快捷鍵說(shuō)明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -