亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? index.html

?? This document contains a general overview in the first few sections as well as a more detailed refer
?? HTML
?? 第 1 頁 / 共 4 頁
字號:
<html>  <head>    <title>SVM-python</title>    <link href="style.css" rel="stylesheet" type="text/css">  </head>  <body><h1>SVM<sup><i>python</i></sup></h1><ul><li>High Level View<ul><li><a href="#overview">Introduction</a></li><li><a href="#building">Building</a></li><li><a href="#using">Using</a></li><li><a href="#learning">Overview of <code>svm_python_learn</code><li><a href="#classification">Overview of <code>svm_python_classify</code></a></ul><li>Low Level Reference<ul><li><a href="#objects">Objects</a></li><li><a href="#details">Details of User Functions</a></li><li><a href="#svmlight"><code>svmlight</code> Extension Module</a><li><a href="#parameters">Special Parameters</a><li><a href="#example">Example Module <code>multiclass</code></a></ul></ul><a class="bookmark" name="overview"><h2>Introduction</h2></a><p>Put simply, SVM<sup><i>python</i></sup> is <a href="http://svmlight.joachims.org/svm_struct.html">SVM<sup><i>struct</i></sup></a>, except that all of the C API functions that the user normally has to implement (except those dealing with C specific problems, most notably memory management) instead call a function of the same name in a <a href="http://www.python.org/">Python</a> module.  You can write an SVM<sup><i>struct</i></sup> instance in Python without having to author any C code.  SVM<sup><i>python</i></sup> tries to stay close to SVM<sup><i>struct</i></sup> in naming conventions and other behavior, but knowledge of SVM<sup><i>struct</i></sup>'s original C implementation is not required.</p><p>This document contains a general overview in the first few sections as well as a more detailed reference in later sections for SVM<sup><i>python</i></sup>.  If you're already familiar with SVM<sup><i>struct</i></sup> and Python, it's possible to get a pretty good idea of how to use the package merely by browsing through <code>svmstruct.py</code> and <code>multiclass.py</code>.  This document provides a more in depth view of how to use the package.</p><p>Note that this is not a conversion of SVM<sup><i>struct</i></sup> to Python.  It is merely an <a href="http://docs.python.org/ext/embedding.html">embedding of Python</a> in existing C code.  All code other than the user implemented API functions is still in C, including optimization.</p><p>SVM<sup><i>light</i></sup> is the basic underlying SVM learner, SVM<sup><i>struct</i></sup> a general framework to learn complex output spaces built upon SVM<sup><i>light</i></sup> for which one would write instantiations to learn in a particular setting, and SVM<sup><i>python</i></sup> extends SVM<sup><i>struct</i></sup> to allow such instantiations to be written in Python instead of in C.  In SVM<sup><i>struct</i></sup>, the user implement various functions in the <code>svm_struct_api.c</code> file, which the underlying SVM<sup><i>struct</i></sup> code calls in order to learn a task.  The intention of SVM<sup><i>struct</i></sup> is that the underlying code is constant, and all that a user needs to change is within <code>svm_struct_api.c</code> and <code>svm_struct_api_type.h</code>.  SVM<sup><i>python</i></sup> works the same way, except all the functions that are to be implemented are instead implemented in a Python module (a <code>.py</code> file), and all these functions in <code>svm_struct_api.c</code> are instead glue code to call their embedded Python equivalents from the module, and all the types in <code>svm_struct_api_type.h</code> contain Python objects.  The intention of SVM<sup><i>python</i></sup> is that is that the C code stays constant and the user writes new and modifies Python modules to implement specific tasks.<p>The primary advantages are that Python tends to be easier and faster to code than C, less resistant to change and code reorganization, tends to be <em>many</em> times more compact, there's no explicit memory management, and Python's object oriented-ness means that some tedious tasks in SVM<sup><i>struct</i></sup> can be easily replaced with default built in behavior.</p><p>My favorite example of this last point is that, since Python objects can be assigned any attribute, and since many Python objects are easily serializable with the <a href="http://docs.python.org/lib/module-pickle.html"><code>pickle</code></a> module, adding a field to the struct-model in Python code consists of a simple assignment like <code>sm.foo = 5</code> at some point, and that's it.  If one were to use C code in SVM<sup><i>struct</i></sup>, one would add a field to the relevant struct, add an assignment, add code to write it to a model file, add code to parse it from a model file, and then test it to make sure all these little changes work well with each other.</p><p>The primary disadvantage to using SVM<sup><i>python</i></sup> is that it is slower than equivalent C code.  For example, considering the time outside of SVM optimization, the Python implementation of multiclass classification takes 9 times the time as <a href="http://svmlight.joachims.org/svm_multiclass.html">SVM<sup><i>multiclass</i></sup></a>.  However, on this task SVM optimization takes about 99.5% of the time anyway, so the increase is often negligible.</p><a class="bookmark" name="building"><h2>Building</h2></a>To build this, a simple <code>make</code> should do it, <em>unless</em> the Python library you want to use is not the library corresponding to the Python interpreter you get when you just type <code>python</code>.<p>You might want to modify the <code>Makefile</code> to modify the <code>PYTHON</code> variable to the path of the desired interpreter.  When you install Python, you install a library and an interpreter.  This interpreter is able to output where its corresponding library is stored.  The <code>Makefile</code> calls the Python interpreter to get this information, as well as other important information relevant to building a C application with embedded Python.  You can specify the path of your desired interpreter by setting <code>PYTHON</code> to something other than <code>python</code>.</p><p>When you build, the program will produce two executables, <code>svm_python_learn</code> for learning a model and <code>svm_python_classify</code> for classification with a learned model.</p><p>I have tried building SVM<sup><i>python</i></sup> with both Python 2.3 and 2.4 on OS X and Linux.  Obviously, if the Python module you want to use usess features specific to Python 2.4 (like generator expressions or the long overdue <code>sorted</code>) you wouldn't be able to use the module with an SVM<sup><i>python</i></sup> built against the Python 2.3 library.<a class="bookmark" name="using"><h2>Using</h2></a><p>One annoying detail of embedded Python is that your <code>PYTHONPATH</code> environment variable has to contain "<code>.</code>" so the executable knows where to look for the module to load.</p><p>The file <code>svmstruct.py</code> is a Python module, and also contains documentation on all the functions which the C code may attempt to call.  This is a good place to start reading if you are already familiar with SVM<sup><i>struct</i></sup> and want to get familiar with how to build a SVM<sup><i>python</i></sup> Python module.  This describes what each function should do and, for non-required functions, describes the default behavior that happens if you <em>don't</em> implement them. The <code>multiclass.py</code> file is an example implementation of multiclass classification in Python.</p><p>Once you've written a Python module in the file <code>foo.py</code> based on <code>svmstruct.py</code> and you want to use SVM<sup><i>python</i></sup> with this module, you would use the following command line commands to learn a model and classify with a model respectively.</p><blockquote><code>./svm_python_learn    --m foo [options] &lt;train&gt; &lt;model&gt;<br>./svm_python_classify --m foo [options] &lt;test&gt;  &lt;model&gt; &lt;output&gt;</code></blockquote><p>Note that SVM<sup><i>python</i></sup> accepts the same arguments as SVM<sup><i>struct</i></sup> plus this extra <code>--m</code> option.  If the <code>--m</code> option is omitted it is equivalent to including the command line arguments <code>--m svmstruct</code>.  Note that though we put this command line option first, the <code>--m</code> option may occur anywhere in the option list.<a class="bookmark" name="learning"><h2>Overview of <code>svm_python_learn</code></h2></a><map name="learningmap"><area shape="rect" coords="39,116,175,161" href="#detail-print_struct_help"><area shape="rect" coords="13,330,200,374" href="#detail-find_most_violated_constraint"><area shape="rect" coords="14,397,201,439" href="#detail-psi"><area shape="rect" coords="30,462,187,505" href="#detail-loss"><area shape="rect" coords="276,58,449,100" href="#detail-parse_struct_parameters"><area shape="rect" coords="289,175,437,219" href="#detail-read_struct_examples"><area shape="rect" coords="307,242,419,286" href="#detail-init_struct_model"><area shape="rect" coords="292,308,433,350" href="#detail-init_struct_constraints"><area shape="rect" coords="280,491,446,536" href="#detail-print_struct_learning_stats"><area shape="rect" coords="301,558,425,600" href="#detail-write_struct_model"></map><img src="learning-tree.gif" alt="Flow Chart of the Learning Program" width="454" height="643" align="right" usemap="#learningmap"><p>Pictured is a diagram illustrating the flow of execution within <code>svm_python_learn</code>.  This diagram also describes the SVM<sup><i>struct</i></sup> learning program pretty well, excepting the stuff particular to loading the Python module, and how structure parameters are <i>always</i> parsed to enable the program to load the Python module, and how everything is in C and all functions are required.</p><p>The <font color="red">red boxes</font> indicate things that are done wihin the underlying C code.  The other boxes indicate functions to be implemented in the Python module.  The <font color="blue">blue boxes</font> indicate functions that absolutely must be implemented or the program won't be able to execute.  The <font color="green">green boxes</font> indicate functions that are not required, strictly speaking, because they have some default behavior.  The <font color="#999900">yellow boxes</font> indicate functions that in the vast majority of cases are probably unnecessary to implement since the default behavior is probably acceptable.</p><p>The <code>svm_python_learn</code> program first checks whether the command line arguments are structured completely correctly.  Whether they are or are not, it checks if a <code>--m</code> module is loaded and loads the Python module.  If the arguments were not structured correctly, the Python module's help function is called to print out information to standard output, at which point the program exits.  If, on the other hand, the arguments check out, the pattern-label example pairs are read from the indicated example file, some parameters for the learning model are set, some preliminary constraints are initialized, the learning model's structures are defined, and then the learning process begins.</p><p>This learning process repeatedly iterates over all training examples.  For each example, the label associated with the most violated constraint for the pattern is found, the feature vector &Psi; describing the relationship between the pattern and the label is computed, and the loss &Delta; is computed.  From the &Psi; and &Delta;, the program determines if the most violated constraint is violated <em>enough</em> to justify adding it to the model.  If it is, then the constraint is added, and the program moves on to the next example.  In the event that no constraints were added in an iteration, the algorithm either lowers its tolerance or, if minimum tolerance has been reached, ends the learning process.</p><p>Once learning has finished, statistics related to learning may be printed out, the model is written to a file, and the program exits.</p><a class="bookmark" name="classification"><h2>Overview of <code>svm_python_classify</code></h2></a><map name="classificationmap"><area shape="rect" coords="33,136,183,179" href="#detail-classify_struct_example"><area shape="rect" coords="49,201,169,246" href="#detail-write_label"><area shape="rect" coords="31,267,188,312" href="#detail-loss">

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
午夜精品久久久久久久久| 91久久精品国产91性色tv| 亚洲成人av一区| 亚洲一区日韩精品中文字幕| 亚洲人成网站色在线观看| 国产精品久久网站| 综合中文字幕亚洲| 亚洲欧美国产三级| 亚洲成人第一页| 蜜桃视频第一区免费观看| 久久国产视频网| 成人av资源站| 欧美另类一区二区三区| 51精品久久久久久久蜜臀| 日韩午夜中文字幕| 国产性做久久久久久| 国产精品超碰97尤物18| 亚洲综合999| 久久精品国产久精国产| 成人免费看的视频| 一本到高清视频免费精品| 欧美日韩一二三| 精品国产乱子伦一区| 国产精品久久福利| 午夜伦理一区二区| 精品一区二区在线视频| 国产成+人+日韩+欧美+亚洲| 99精品视频在线观看免费| 欧美喷潮久久久xxxxx| 国产色产综合色产在线视频| 中文字幕亚洲电影| 日韩电影在线观看一区| 大胆欧美人体老妇| 7777精品伊人久久久大香线蕉经典版下载 | 国产欧美日韩精品一区| 亚洲美女在线一区| 精品一区二区国语对白| 色综合天天狠狠| 精品国产不卡一区二区三区| 一区二区三区资源| 国产精品自在欧美一区| 91麻豆精品国产91| 亚洲男同性视频| 国产成人在线色| 欧美日韩大陆在线| 一区二区三区四区视频精品免费 | 91成人免费在线视频| 精品成人佐山爱一区二区| 亚洲制服丝袜av| 成人久久久精品乱码一区二区三区| 欧美日韩久久不卡| 亚洲免费三区一区二区| 丰满亚洲少妇av| 精品国产乱码久久久久久夜甘婷婷 | 久草这里只有精品视频| 欧美三级三级三级| 亚洲精品午夜久久久| 成人v精品蜜桃久久一区| 欧美成人性福生活免费看| 亚洲成人av福利| 欧美写真视频网站| 亚洲黄色录像片| 在线免费亚洲电影| 亚洲美女一区二区三区| 91亚洲永久精品| 中文字幕一区二区不卡| 成人小视频免费观看| 日本一区二区三区高清不卡| 国产一区在线观看麻豆| 精品国产91乱码一区二区三区| 日韩中文字幕不卡| 777色狠狠一区二区三区| 日韩黄色小视频| 欧美大片免费久久精品三p| 美女视频黄a大片欧美| 日韩欧美一级精品久久| 精品一区二区三区av| 2021中文字幕一区亚洲| 国产精品综合二区| 欧美激情中文字幕| 99综合影院在线| 亚洲国产精品麻豆| 337p亚洲精品色噜噜| 免费观看在线综合色| 久久久亚洲高清| jlzzjlzz国产精品久久| 亚洲欧美综合网| 欧美日韩三级在线| 久久精品国产亚洲一区二区三区| 亚洲精品一区二区三区影院| 国产九色sp调教91| 亚洲精品视频一区| 正在播放一区二区| 国产成人自拍在线| 亚洲欧美另类久久久精品| 欧美精品丝袜中出| 国产一区二区三区在线观看精品| 国产欧美日韩视频一区二区 | 亚洲乱码精品一二三四区日韩在线| 波多野结衣中文字幕一区| 亚洲精品国产品国语在线app| 欧美偷拍一区二区| 国产精品一区二区三区四区| 国产精品天干天干在线综合| 在线视频中文字幕一区二区| 免播放器亚洲一区| 国产精品激情偷乱一区二区∴| 91成人网在线| 国产成人亚洲综合a∨婷婷| 亚洲精品亚洲人成人网在线播放| 日韩精品一区二区三区蜜臀| 91在线观看地址| 麻豆专区一区二区三区四区五区| 国产精品三级av| 欧美久久久久久蜜桃| 成人黄色综合网站| 丝袜美腿亚洲一区| 1区2区3区国产精品| 日韩亚洲欧美在线| 欧美日韩一区高清| 成人av片在线观看| 美女视频一区在线观看| 亚洲一区免费观看| 亚洲欧美日韩在线播放| 2023国产精华国产精品| 欧美一区二区三区不卡| 色网综合在线观看| 成人av动漫网站| 美女任你摸久久| 亚洲国产aⅴ天堂久久| 中文字幕亚洲区| 中文幕一区二区三区久久蜜桃| 91精品国产麻豆国产自产在线 | 欧美成人一区二区三区在线观看 | 成人午夜免费视频| 九色综合国产一区二区三区| 亚洲在线免费播放| 国产精品国产三级国产aⅴ无密码| 欧美成人精品3d动漫h| 欧美精品第1页| 欧美三级欧美一级| 欧美日韩一区二区三区在线| 91亚洲精品乱码久久久久久蜜桃| 国产一区二三区好的| 韩国v欧美v日本v亚洲v| 蜜桃久久精品一区二区| 青青草原综合久久大伊人精品| 一片黄亚洲嫩模| 夜夜嗨av一区二区三区中文字幕 | 日本最新不卡在线| 天堂久久一区二区三区| 亚洲va国产天堂va久久en| 亚洲自拍偷拍网站| 香蕉久久夜色精品国产使用方法| 亚洲综合一区二区三区| 亚洲国产日韩精品| 日韩成人dvd| 久久精品国产第一区二区三区| 美女一区二区三区| 国产馆精品极品| 成人激情黄色小说| 欧美怡红院视频| 欧美精选一区二区| 日韩女优电影在线观看| 精品国产伦理网| 亚洲欧洲日韩一区二区三区| 亚洲男女一区二区三区| 丝袜亚洲另类欧美综合| 激情综合色综合久久| 国产不卡在线一区| 日本韩国欧美一区| 4438x成人网最大色成网站| 久久综合久色欧美综合狠狠| 国产精品久久久久影院老司| 一区二区三区在线视频观看| 亚洲一区二区欧美| 免费看黄色91| 99精品视频一区二区| 欧美一级久久久久久久大片| 久久免费电影网| 一级做a爱片久久| 老司机午夜精品| 91美女在线看| 日韩精品一区二| 亚洲夂夂婷婷色拍ww47| 国产综合色产在线精品| 91久久精品国产91性色tv| 精品粉嫩超白一线天av| 亚洲激情图片一区| 国产麻豆精品一区二区| 在线观看中文字幕不卡| 久久久久久久久久久久久久久99| 亚洲欧美日韩国产综合在线| 久久电影国产免费久久电影| 日本精品视频一区二区三区| 久久综合九色综合97婷婷 | 久久国产精品99精品国产| 成人av资源站| 久久看人人爽人人| 日韩成人av影视|