亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? index.html

?? This document contains a general overview in the first few sections as well as a more detailed refer
?? HTML
?? 第 1 頁 / 共 4 頁
字號:
<area shape="rect" coords="30,334,187,378" href="#detail-eval_prediction"><area shape="rect" coords="296,110,415,153" href="#detail-read_struct_model"><area shape="rect" coords="284,175,429,219" href="#detail-read_struct_examples"><area shape="rect" coords="275,293,437,337" href="#detail-print_struct_testing_stats"></map><img src="testing-tree.gif" alt="Flow Chart of the Classification Program" width="442" height="381" align="right" usemap="#classificationmap"><p>Pictured is a diagram illustrating the flow of execution within <code>svm_python_classify</code>.  The color coding of the boxes is the same as that in the high level description of the <a href="#learning">learning program</a>.</p><p>The <code>svm_python_classify</code> program first checks whether the command line arguments are fine, and if they are not it exits.  Otherwise, the indicated Python module is loaded.  Then, the learned model is read and the testing pattern-label example pairs are loaded from the indicated example file.  Then, it iterates over all the testing examples, classifies each example, writes the label to a file, finding the loss of this example, and then may evaluate the prediction and accumulate statistics.  Once each example is processed, some summary statistics are printed out and the program exits.</p><a class="bookmark" name="objects"><h2>Objects</h2></a><p>The functions a user writes for the Python module will accept some objects as arguments, and return other objects.  These objects correspond more or less like structures in C code: their intended use is that they only contain data.  Though knowledge of SVM<sup><i>struct</i></sup>'s peculiarities is not strictly required to know how to use SVM<sup><i>python</i></sup>, attention was given to make SVM<sup><i>python</i></sup> resemble SVM<sup><i>struct</i></sup> to as great a degree as seemed sensible, including the names of functions and how different types of objects are structured.</p><p>In this section we go over the types of these objects that a user needs to be aware of in order to interface successfully with SVM<sup><i>python</i></sup>.  Note that if you change a value in the Python object this does not copy over to the corresponding C structure, except in the case where you initialize <code>size_psi</code>, and during classification where you read the model and synchronize the Python object to the C structures.  This disparity between the two may change in future releases if the performance hit for copying everything over becomes too offensive.</p><h3>Structure Model (sm)</h3><img src="object-sm.gif" alt="Diagram Showing SM" width="152" height="360" align="left"><p>Many of the module functions get the structure model as input.  In the documentation, the structure model argument is called <code>sm</code> in a functions argument list.  This type of corresponds to the C data type <code>STRUCTMODEL</code> that is passed into many functions.  In nearly every case, the only necessary attributes to know about are the <font color="red">red ones</font>, but we describe the others as well.</p><p>The <font color="red">red attributes</font> correspond to those that appear within a <code>STRUCTMODEL</code> C structure.  If we are learning or classification with a linear kernel, <code>w</code> is the linear weight vector of length <code>size_psi+1</code>, indexed from 1 through <code>size_psi</code> inclusive.  <code>size_psi</code> contains the maximum feature index for out examples, which in the linear case is also equal to the number of weights we are learning.</p><p>The <font color="green">green attributes</font> correspond to those that appear within a <code>STRUCTMODEL</code> C structure's <code>svm_model</code> field.  <code>sv_num</code> holds the number of support vectors plus one.  <code>supvec</code> is a sequence of document objects (described later) that encode every document, while <code>alpha</code> is the multiplier associated with each support vector, where entry <code>alpha[i]</code> corresponds to entry <code>supvec[i-1]</code>.  The <code>b</code> parameter is the linear weight you get if you use the <code>svmlight.classify_example</code> function.  I am less familiar with the role some of the rest of these play with SVM<sup><i>python</i></sup>'s learning model as many of them never seem to be set to anything but a default value, but they are copied to the structure model anyway.<p>The <font color="blue">blue attributes</font> correspond to those that appear within a <code>STRUCTMODEL</code> C structure's <code>svm_model.kernel_parm</code> field, holding attributes relating to the kernel.  The <code>kernel_type</code> parameter is an integer holding the type of kernel, either linear (0), polynomial (1), RBF (2), sigmoid (3), or user defined (4).  For the polynomial kernel, <code>coef_lin</code> and <code>coef_const</code> hold the coefficient for the inner product of the two vectors and the constant term, while <code>poly_degree</code> holds the polynomial degree to which the sum of the inner product and constant coefficent is taken.  For the RBF kernel, <code>rbf_gamma</code> holds the gamma parameter.  The <code>custom</code> parameter is a string holding information that may be of use for a user defined kernel.</p><p>Finally, the <code>cobj</code> object is an object that holds the C <code>STRUCTMODEL</code> structure corresponding to the Python structure model object.  This is of no use within Python, and is used in the event that you call some function of the <code>svmlight</code> package that requires a structure model.</p><p>Note that, while learning, anything you store in the structure model will eventually be written out to the model so it can be restored to the classifier, excepting entries that are deleted or overwritten.  So, if you want to pass any information from the learner to the classifier, store it in the structure model.  For example, if you at some point set <code>sm.foo = 10</code> while learning, then during classification <code>sm.foo</code> will evaluate to the integer 10.</p><p>The Python code never needs to create structure model objects.</p><h3>Structure Learning Parameters (sparm)</h3><img src="object-sparm.gif" alt="Diagram Showing Sparm" width="151" height="150" align="left"><p>Many of the module functions for learning get a structure learning parameter object, identified as <code>sparm</code> in a function's argument list, which holds many attributes related to structured learning.<p>Some attributes control how the program optimizes.  Recall that the learning process adds a constraint if the constraint is sufficiently violated; The <code>epsilon</code> attribute controls how much a constraint can be violated before it is added to the model.  In the learning process, constriants are added, but the quadratic program is not reoptimized after <em>every</em> constraint is added, but may wait till as many as <code>newconstretrain</code> constraints are added before it reoptimizes.</p><p>For attributes relating directly to the quadratic program, the <code>C</code> attribute is the usual SVM regularization parameter that controls the tradeoff between low slack (high C) and a simple model (low C).  The <code>slack_norm</code> is 1 or 2 depending on what norm is used on the slack vector in the quadratic program.  The <code>loss_type</code> is an integer indicating whether loss is introduced into constraints by multiplying by the slack term (<code>loss_type=1</code>) or by dividing by the margin term (<code>loss_type=2</code>).</p><p>Other attributes are more for the benefit of the user code, including <code>loss_function</code>, an integer indicating which loss function to use.  The <code>custom_argv</code> and <code>custom_argd</code> attributes hold the custom command line arguments.  In SVM<sup><i>python</i></sup>, as in SVM<sup><i>struct</i></sup>, custom command line argument flags are prefixed with two dashes, while the universal command line argument flags are prefixed with one dash.  The <code>custom_argv</code> holds the list of all the custom arguments, while <code>custom_argd</code> is a dictionary holding a mapping of each "<code>--key</code>" argument to the "<code>value</code>" argument following it.  For example, if the command line arguments "<code>--foo bar --biz bam</code>" are processed, <code>custom_argv</code> would hold the Python sequence <code>['--foo', 'bar', '--biz', 'bam']</code>, while <code>custom_argd</code> would hold the Python dictionary <code>{'foo':'bar', 'biz':'bam'}</code>.</p><p>The Python code never needs to create structure learning parameter objects.</p><h3>Word Sequences (words)</h3><p>In SVM<sup><i>light</i></sup> and SVM<sup><i>struct</i></sup>, the basic feature vector is represented as an array of <code>WORD</code> objects, each of which encodes the feature index number (an integer counting from 1 and higher), and the feature value for this index (a floating point number for the value of the feature).  In the Python code of SVM<sup><i>python</i></sup>, a structure corresponding to these word arrays is a sequence of tuples.  Each tuple has two elements, where the first is the index of the feature, and the second is the value of the feature as described earlier.  So, a sequence <code>[(1,2.3), (5,-6.1), (8,0.5)]</code> has features 1, 5, and 8 with values 2.3, -6.1, and 0.5 respectively; all other features implicitly have value 0.  Note that, as in SVM<sup><i>light</i></sup>, word arrays start counting feature indices from 1, and the features must be listed in increasing feature index order, so if a tuple <var>(a,b)</var> occurs before a tuple <var>(c,d)</var>, it must be that <var>a &lt; c</var>.</p><h3>Support Vector (sv)</h3><img src="object-sv.gif" alt="Diagram Showing SV" width="152" height="80" align="left"><p>A support vector structure corresponds to the <code>SVECTOR</code> C structure, which holds information relevant to a support vector, but it is used more generally simply as a feature vector.  The <code>words</code> attribute holds a word sequence as described earlier to encode the feature values.  The <code>userdefined</code> attribute holds a string presumably relevant to user defined kernels, but in most cases it is the empty string.  The <code>kernel_id</code> is an attribute relevant to kernels, as only vectors with the same <code>kernel_id</code> have their kernel product taken.  The <code>factor</code> attribute is the coefficient for the term in the sum of kernel function evaluations.</p><p>The <code>SVECTOR</code> C structure also holds a <code>next</code> field, allowing for linked list of kernel functions.  To get this functionality in the Python code, whenever a support vector object is expected or asked for, you can instead pass in or return a sequence of support vector objects, and all the structures that say that an attribute holds a support vector instead has an attribute that holds a sequence of support vectors.</p><p>You can create support vector objects through the use of the <code>svmlight.create_svector</code> function.  Support vectors are useful for <code>svmlight.classify_example</code> function, returned from the <code>psi</code> user function, and contained within document objects, described below.</p><h3>Document (doc)</h3><img src="object-doc.gif" alt="Diagram Showing Doc" width="151" height="80" align="left"><p>A document vector structure corresponds to the <code>DOC</code> C structure, which holds information relevant to a document example in SVM<sup><i>light</i></sup>, but within SVM<sup><i>struct</i></sup> and SVM<sup><i>python</i></sup> is used for encoding constraints.  The <code>fvec</code> attribute holds sequence of support vector objects.  The <code>costfactor</code> attribute indicates how important it is not to misclassify this example; I'm unclear on the importance of this attribute to SVM<sup><i>struct</i></sup>.</p>  The <code>slackid</code> attribute indicates which slack ID is associated with this constraint; if two constraints have the same slack ID, then they share the same slack variable.  Finally, SVM<sup><i>struct</i></sup> appears to use <code>docnum</code> as the position of the constraint in the constraint set.<p>You can create support vector objects through the use of the <code>svmlight.create_doc</code> function.  Examples of uses of document objects include the return list from the <code>init_struct_constraints</code> user function to encode initial constraints, the <code>sm.supvec</code> list consists of document objects, and the <code>print_struct_learning_stats</code> has an argument for a list of constraints encoded as document objects.</p><h3>Patterns and Labels (x, y)</h3><p>In SVM<sup><i>struct</i></sup>'s C API, patterns and labels must be declared as structures.  In SVM<sup><i>python</i></sup>, because patterns and labels only interact with the code in the Python module, the underlying code does not need to know anything about these, so these may be any Python objects.  Their types do not have to be explicitly created, and they do not have to have any particular attributes beyond what is used by the user created Python module.</p><a class="bookmark" name="details"><h2>Details of User Functions</h2></a><p>In this part, detailed descriptions of each of the user functions is listed.  The expectation that SVM<sup><i>python</i></sup> has of each function is </p><dl>    <dt><a class="bookmark" name="detail-classify_struct_example"><code><b>classify_struct_example</b></code></a>(<i>x, sm, sparm</i>)</dt><dd>Given a pattern <var>x</var>, return the predicted label.</dd>        <dt><a class="bookmark" name="detail-eval_prediction"><code><b>eval_prediction</b></code></a>(<i>exnum, x, y, ypred, sm, sparm, teststats</i>)</dt><dd>Accumulate statistics about a single training example.<p>Allows accumulated statistics regarding how well the predicted label <var>ypred</var> for pattern <var>x</var> matches the true label <var>y</var>.  The first time this function is called teststats is <code>None</code>.  This function's return value will be passed along to the next call to <code>eval_prediction</code>.  After all test predictions are made, the last value returned will be passed along to <code>print_testing_stats</code>.<p>If this function is not implemented, the default behavior is equivalent to initialize teststats as an empty list on the first example, and thence for each prediction appending the loss between y and ypred to teststats, and returning teststats.</dd>        <dt><a class="bookmark" name="detail-find_most_violated_constraint"><code><b>find_most_violated_constraint</b></code></a>(<i>x, y, sm, sparm</i>)</dt><dd>Return <var>ybar</var> associated with <var>x</var>'s most violated constraint.<p>Returns the label <var>ybar</var> for pattern <var>x</var> corresponding to the most violated constraint according to SVM<sup><i>struct</i></sup> cost function.  To find which cost function you should use, check sparm.loss_type for whether this is slack or margin rescaling (1 or 2 respectively), and check sparm.slack_norm for whether the slack vector is in an L1-norm or L2-norm in the QP (1 or 2 respectively).  If there's no incorrect label, then return <code>None</code>.<p>If this function is not implemented, this function is equivalent to <code>classify</code>(<i>x, sm, sparm</i>).  The guarantees of optimality of Tsochantaridis et al. no longer hold since this doesn't take the loss into account at all, but it isn't always a terrible approximation, and indeed impiracally speaking on many clustering problems I have looked at it doesn't yield a statistically significant difference in performance on a test set.</dd>        <dt><a class="bookmark" name="detail-init_struct_constraints"><code><b>init_struct_constraints</b></code></a>(<i>sample, sm, sparm</i>)</dt>

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
美女脱光内衣内裤视频久久影院| 久久免费美女视频| 亚洲免费观看高清完整版在线 | 亚洲欧美日韩国产综合在线| 色老汉一区二区三区| 一区二区三区蜜桃| 91精品久久久久久久久99蜜臂| 午夜精品一区在线观看| 日韩一区二区电影网| 国产一区二区三区精品视频| 欧美激情综合五月色丁香小说| 9久草视频在线视频精品| 亚洲一区av在线| 日韩一级成人av| 国产91清纯白嫩初高中在线观看| 1区2区3区国产精品| 欧美日韩精品一区二区三区| 精品亚洲成a人| 亚洲日本在线a| 欧美大黄免费观看| 色综合天天综合网国产成人综合天 | 中文字幕一区视频| 欧美午夜寂寞影院| 久草热8精品视频在线观看| 国产精品视频在线看| 在线免费观看不卡av| 久久精品72免费观看| 亚洲国产电影在线观看| 欧美精品色综合| 丁香激情综合国产| 婷婷中文字幕一区三区| 国产日韩欧美在线一区| 欧美日韩精品电影| 成年人国产精品| 琪琪一区二区三区| 一区二区在线观看视频在线观看| 日韩视频国产视频| 91黄色小视频| 国产成人精品三级| 免费三级欧美电影| 亚洲人成人一区二区在线观看 | 欧美日韩亚洲不卡| 粉嫩av一区二区三区粉嫩| 五月天丁香久久| 日韩美女视频19| 精品国产91亚洲一区二区三区婷婷| 91视频xxxx| 国产精品中文字幕日韩精品 | 久久只精品国产| 欧美日韩国产片| 91久久国产最好的精华液| 国产风韵犹存在线视精品| 蜜臀精品一区二区三区在线观看| 亚洲激情在线激情| 久久久精品蜜桃| 精品国产一区二区三区久久影院| 91精品福利在线| 色婷婷综合久久| av中文字幕不卡| 国产夫妻精品视频| 激情久久久久久久久久久久久久久久 | 欧美主播一区二区三区美女| av一区二区不卡| 国产91丝袜在线18| 国产精华液一区二区三区| 黄页网站大全一区二区| 免费成人av资源网| 日本欧美肥老太交大片| 亚洲一区二区三区自拍| 亚洲手机成人高清视频| 国产精品黄色在线观看| 国产日韩欧美精品综合| 国产精品天美传媒| 中文成人综合网| 国产精品嫩草99a| 久久精品水蜜桃av综合天堂| 久久久久国产成人精品亚洲午夜 | 欧美日本一区二区| 欧美高清激情brazzers| 欧美高清视频一二三区| 欧美一个色资源| 日韩欧美在线1卡| 日韩精品综合一本久道在线视频| 日韩一级高清毛片| 久久色在线视频| 国产女人18水真多18精品一级做| 日本一区免费视频| 亚洲人成网站在线| 亚洲国产三级在线| 日韩电影免费在线观看网站| 蜜桃视频免费观看一区| 国产一区二区三区在线看麻豆| 国产一区二区免费在线| 国产一区二区三区国产| 97精品视频在线观看自产线路二| 色婷婷久久一区二区三区麻豆| 91久久精品日日躁夜夜躁欧美| 欧美精品123区| 久久午夜色播影院免费高清| 日本一区二区久久| 一区二区三区在线视频观看| 亚洲图片欧美色图| 精品一区二区三区在线观看| 国产成人午夜视频| 色先锋久久av资源部| 欧美一区二区三区四区在线观看| 欧美r级电影在线观看| 国产精品传媒在线| 舔着乳尖日韩一区| 国产成人啪午夜精品网站男同| 99精品视频中文字幕| 在线成人av影院| 日本一二三不卡| 亚洲线精品一区二区三区八戒| 韩国女主播成人在线观看| 99在线精品一区二区三区| 欧美片在线播放| 国产精品少妇自拍| 日韩精品一二三区| 99re6这里只有精品视频在线观看 99re8在线精品视频免费播放 | 91精品久久久久久久99蜜桃 | 一区二区三区精密机械公司| 免费观看30秒视频久久| 99re免费视频精品全部| 精品伦理精品一区| 亚洲一区二区三区视频在线 | 亚洲精品久久7777| 韩国精品一区二区| 欧美视频一区在线观看| 久久久精品人体av艺术| 天堂影院一区二区| 91美女在线看| 国产亚洲欧美日韩在线一区| 日韩专区在线视频| 92精品国产成人观看免费| www欧美成人18+| 亚洲超碰精品一区二区| 99在线精品免费| 国产亚洲短视频| 美女mm1313爽爽久久久蜜臀| 欧美亚洲一区三区| 亚洲欧美日本韩国| 成人黄色片在线观看| 亚洲精品一区在线观看| 肉丝袜脚交视频一区二区| 99久久免费视频.com| 国产精品日产欧美久久久久| 精品在线免费观看| 在线播放国产精品二区一二区四区 | 色婷婷精品久久二区二区蜜臀av| 久久婷婷色综合| 麻豆精品国产91久久久久久| 欧美日韩国产小视频| 亚洲午夜精品网| 色狠狠桃花综合| 日韩毛片视频在线看| 成人精品一区二区三区中文字幕| 精品国产露脸精彩对白| 久久成人精品无人区| 日韩丝袜美女视频| 蜜臀精品久久久久久蜜臀| 91麻豆精品91久久久久同性| 亚洲国产毛片aaaaa无费看 | 欧美一区日本一区韩国一区| 亚洲一区二区三区激情| 欧美婷婷六月丁香综合色| 一区二区三区不卡在线观看| 99精品黄色片免费大全| 亚洲精品视频在线| 在线观看成人小视频| 亚洲愉拍自拍另类高清精品| 欧美性色aⅴ视频一区日韩精品| 亚洲精品第一国产综合野| 日本韩国欧美一区二区三区| 一区二区三区精品在线观看| 欧美自拍偷拍一区| 日本午夜精品视频在线观看| 91精品国产麻豆| 另类小说综合欧美亚洲| 久久综合久久鬼色中文字| 国产成人欧美日韩在线电影| 国产精品久久久久久久午夜片| 99精品国产视频| 亚洲午夜精品在线| 日韩三级免费观看| 国产精品一品二品| 亚洲图片欧美激情| 欧美少妇性性性| 麻豆精品国产传媒mv男同| 国产亚洲精久久久久久| 日本韩国一区二区三区视频| 日韩电影一区二区三区| 国产清纯美女被跳蛋高潮一区二区久久w | 国产精品电影一区二区| 91蝌蚪porny| 免费三级欧美电影| 国产精品三级电影| 欧美日韩一区二区三区不卡| 国产综合久久久久影院| 亚洲视频中文字幕|