?? f_lms.asv
字號:
function [w,e] = f_lms (x,d,m,mu,w)
%F_LMS: System identification using least mean square method
%
% y(k) = w(1)x(k) + w(2)x(k-1) + ... + w(m+1)x(k-m)
%
% Usage: [w,e] = f_lms (x,d,m,mu,w)
%
% Inputs:
% x = N by 1 vector containing input samples
% d = N by 1 vector containing desired output
% samples
% m = order of transversal filter (m >= 0)
% mu = step size to use for updating w
% w = an optional (m+1) by 1 vector containing
% the initial values of the weights
% (default: w = 0)
% Outputs:
% w = (m+1) by 1 weight vector of filter
% coefficients
% e = an optional N by 1 vector of errors where
% e(k) = d(k)-y(k)
%
% Notes: Typically mu << 1/[(m+1)*P_x] where P_x is the
% average power of input x.
%
% See also: F_NORMLMS, F_CORRLMS, F_LEAKLMS, F_FXLMS, F_RLS
% Initialize
m = f_clip (m,0,m);
mu = f_clip (mu,0,mu);
N = length(x);
if nargin < 5
w = zeros(m+1,1);
end
theta = zeros(m+1,1);
e = zeros(size(x));
q = f_tocol(x);
% Find optimal weight vector
for k = 1 : N
if k < (m+1)
theta(1:k) = q(k:-1:1);
else
theta = q(k:-1:k-m);
end
e(k) = d(k) - w'*theta;
w = w + 2*mu*e(k)*theta;
end
%-----------------------------------------------------------------------
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -