亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? rfc1951.txt

?? SharpZipLib之前叫做NZipLib
?? TXT
?? 第 1 頁 / 共 3 頁
字號:
         represent the value 14.                  Extra           Extra               Extra             Code Bits Dist  Code Bits   Dist     Code Bits Distance             ---- ---- ----  ---- ----  ------    ---- ---- --------               0   0    1     10   4     33-48    20    9   1025-1536               1   0    2     11   4     49-64    21    9   1537-2048               2   0    3     12   5     65-96    22   10   2049-3072               3   0    4     13   5     97-128   23   10   3073-4096               4   1   5,6    14   6    129-192   24   11   4097-6144               5   1   7,8    15   6    193-256   25   11   6145-8192               6   2   9-12   16   7    257-384   26   12  8193-12288               7   2  13-16   17   7    385-512   27   12 12289-16384               8   3  17-24   18   8    513-768   28   13 16385-24576               9   3  25-32   19   8   769-1024   29   13 24577-32768      3.2.6. Compression with fixed Huffman codes (BTYPE=01)         The Huffman codes for the two alphabets are fixed, and are not         represented explicitly in the data.  The Huffman code lengths         for the literal/length alphabet are:                   Lit Value    Bits        Codes                   ---------    ----        -----                     0 - 143     8          00110000 through                                            10111111                   144 - 255     9          110010000 through                                            111111111                   256 - 279     7          0000000 through                                            0010111                   280 - 287     8          11000000 through                                            11000111Deutsch                      Informational                     [Page 12]RFC 1951      DEFLATE Compressed Data Format Specification      May 1996         The code lengths are sufficient to generate the actual codes,         as described above; we show the codes in the table for added         clarity.  Literal/length values 286-287 will never actually         occur in the compressed data, but participate in the code         construction.         Distance codes 0-31 are represented by (fixed-length) 5-bit         codes, with possible additional bits as shown in the table         shown in Paragraph 3.2.5, above.  Note that distance codes 30-         31 will never actually occur in the compressed data.      3.2.7. Compression with dynamic Huffman codes (BTYPE=10)         The Huffman codes for the two alphabets appear in the block         immediately after the header bits and before the actual         compressed data, first the literal/length code and then the         distance code.  Each code is defined by a sequence of code         lengths, as discussed in Paragraph 3.2.2, above.  For even         greater compactness, the code length sequences themselves are         compressed using a Huffman code.  The alphabet for code lengths         is as follows:               0 - 15: Represent code lengths of 0 - 15                   16: Copy the previous code length 3 - 6 times.                       The next 2 bits indicate repeat length                             (0 = 3, ... , 3 = 6)                          Example:  Codes 8, 16 (+2 bits 11),                                    16 (+2 bits 10) will expand to                                    12 code lengths of 8 (1 + 6 + 5)                   17: Repeat a code length of 0 for 3 - 10 times.                       (3 bits of length)                   18: Repeat a code length of 0 for 11 - 138 times                       (7 bits of length)         A code length of 0 indicates that the corresponding symbol in         the literal/length or distance alphabet will not occur in the         block, and should not participate in the Huffman code         construction algorithm given earlier.  If only one distance         code is used, it is encoded using one bit, not zero bits; in         this case there is a single code length of one, with one unused         code.  One distance code of zero bits means that there are no         distance codes used at all (the data is all literals).         We can now define the format of the block:               5 Bits: HLIT, # of Literal/Length codes - 257 (257 - 286)               5 Bits: HDIST, # of Distance codes - 1        (1 - 32)               4 Bits: HCLEN, # of Code Length codes - 4     (4 - 19)Deutsch                      Informational                     [Page 13]RFC 1951      DEFLATE Compressed Data Format Specification      May 1996               (HCLEN + 4) x 3 bits: code lengths for the code length                  alphabet given just above, in the order: 16, 17, 18,                  0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15                  These code lengths are interpreted as 3-bit integers                  (0-7); as above, a code length of 0 means the                  corresponding symbol (literal/length or distance code                  length) is not used.               HLIT + 257 code lengths for the literal/length alphabet,                  encoded using the code length Huffman code               HDIST + 1 code lengths for the distance alphabet,                  encoded using the code length Huffman code               The actual compressed data of the block,                  encoded using the literal/length and distance Huffman                  codes               The literal/length symbol 256 (end of data),                  encoded using the literal/length Huffman code         The code length repeat codes can cross from HLIT + 257 to the         HDIST + 1 code lengths.  In other words, all code lengths form         a single sequence of HLIT + HDIST + 258 values.   3.3. Compliance      A compressor may limit further the ranges of values specified in      the previous section and still be compliant; for example, it may      limit the range of backward pointers to some value smaller than      32K.  Similarly, a compressor may limit the size of blocks so that      a compressible block fits in memory.      A compliant decompressor must accept the full range of possible      values defined in the previous section, and must accept blocks of      arbitrary size.4. Compression algorithm details   While it is the intent of this document to define the "deflate"   compressed data format without reference to any particular   compression algorithm, the format is related to the compressed   formats produced by LZ77 (Lempel-Ziv 1977, see reference [2] below);   since many variations of LZ77 are patented, it is strongly   recommended that the implementor of a compressor follow the general   algorithm presented here, which is known not to be patented per se.   The material in this section is not part of the definition of theDeutsch                      Informational                     [Page 14]RFC 1951      DEFLATE Compressed Data Format Specification      May 1996   specification per se, and a compressor need not follow it in order to   be compliant.   The compressor terminates a block when it determines that starting a   new block with fresh trees would be useful, or when the block size   fills up the compressor's block buffer.   The compressor uses a chained hash table to find duplicated strings,   using a hash function that operates on 3-byte sequences.  At any   given point during compression, let XYZ be the next 3 input bytes to   be examined (not necessarily all different, of course).  First, the   compressor examines the hash chain for XYZ.  If the chain is empty,   the compressor simply writes out X as a literal byte and advances one   byte in the input.  If the hash chain is not empty, indicating that   the sequence XYZ (or, if we are unlucky, some other 3 bytes with the   same hash function value) has occurred recently, the compressor   compares all strings on the XYZ hash chain with the actual input data   sequence starting at the current point, and selects the longest   match.   The compressor searches the hash chains starting with the most recent   strings, to favor small distances and thus take advantage of the   Huffman encoding.  The hash chains are singly linked. There are no   deletions from the hash chains; the algorithm simply discards matches   that are too old.  To avoid a worst-case situation, very long hash   chains are arbitrarily truncated at a certain length, determined by a   run-time parameter.   To improve overall compression, the compressor optionally defers the   selection of matches ("lazy matching"): after a match of length N has   been found, the compressor searches for a longer match starting at   the next input byte.  If it finds a longer match, it truncates the   previous match to a length of one (thus producing a single literal   byte) and then emits the longer match.  Otherwise, it emits the   original match, and, as described above, advances N bytes before   continuing.   Run-time parameters also control this "lazy match" procedure.  If   compression ratio is most important, the compressor attempts a   complete second search regardless of the length of the first match.   In the normal case, if the current match is "long enough", the   compressor reduces the search for a longer match, thus speeding up   the process.  If speed is most important, the compressor inserts new   strings in the hash table only when no match was found, or when the   match is not "too long".  This degrades the compression ratio but   saves time since there are both fewer insertions and fewer searches.Deutsch                      Informational                     [Page 15]RFC 1951      DEFLATE Compressed Data Format Specification      May 19965. References   [1] Huffman, D. A., "A Method for the Construction of Minimum       Redundancy Codes", Proceedings of the Institute of Radio       Engineers, September 1952, Volume 40, Number 9, pp. 1098-1101.   [2] Ziv J., Lempel A., "A Universal Algorithm for Sequential Data       Compression", IEEE Transactions on Information Theory, Vol. 23,       No. 3, pp. 337-343.   [3] Gailly, J.-L., and Adler, M., ZLIB documentation and sources,       available in ftp://ftp.uu.net/pub/archiving/zip/doc/   [4] Gailly, J.-L., and Adler, M., GZIP documentation and sources,       available as gzip-*.tar in ftp://prep.ai.mit.edu/pub/gnu/   [5] Schwartz, E. S., and Kallick, B. "Generating a canonical prefix       encoding." Comm. ACM, 7,3 (Mar. 1964), pp. 166-169.   [6] Hirschberg and Lelewer, "Efficient decoding of prefix codes,"       Comm. ACM, 33,4, April 1990, pp. 449-459.6. Security Considerations   Any data compression method involves the reduction of redundancy in   the data.  Consequently, any corruption of the data is likely to have   severe effects and be difficult to correct.  Uncompressed text, on   the other hand, will probably still be readable despite the presence   of some corrupted bytes.   It is recommended that systems using this data format provide some   means of validating the integrity of the compressed data.  See   reference [3], for example.7. Source code   Source code for a C language implementation of a "deflate" compliant   compressor and decompressor is available within the zlib package at   ftp://ftp.uu.net/pub/archiving/zip/zlib/.8. Acknowledgements   Trademarks cited in this document are the property of their   respective owners.   Phil Katz designed the deflate format.  Jean-Loup Gailly and Mark   Adler wrote the related software described in this specification.   Glenn Randers-Pehrson converted this document to RFC and HTML format.Deutsch                      Informational                     [Page 16]RFC 1951      DEFLATE Compressed Data Format Specification      May 19969. Author's Address   L. Peter Deutsch   Aladdin Enterprises   203 Santa Margarita Ave.   Menlo Park, CA 94025   Phone: (415) 322-0103 (AM only)   FAX:   (415) 322-1734   EMail: <ghost@aladdin.com>   Questions about the technical content of this specification can be   sent by email to:   Jean-Loup Gailly <gzip@prep.ai.mit.edu> and   Mark Adler <madler@alumni.caltech.edu>   Editorial comments on this specification can be sent by email to:   L. Peter Deutsch <ghost@aladdin.com> and   Glenn Randers-Pehrson <randeg@alumni.rpi.edu>Deutsch                      Informational                     [Page 17]

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日韩精品国产欧美| 国产美女在线观看一区| 日韩在线卡一卡二| 国产精品一区二区久激情瑜伽| 成人精品一区二区三区中文字幕| 91麻豆.com| 欧美一区二区三区男人的天堂| 久久久不卡影院| 亚洲18色成人| 国产aⅴ综合色| 日本高清不卡一区| 久久久久青草大香线综合精品| 亚洲日本丝袜连裤袜办公室| 免费成人在线视频观看| 91美女视频网站| www一区二区| 丝袜国产日韩另类美女| 色婷婷综合久久久| 久久综合五月天婷婷伊人| 国产日韩av一区二区| 蜜臀av性久久久久蜜臀aⅴ流畅 | 欧美日韩精品一区二区天天拍小说| 欧美唯美清纯偷拍| 国产午夜精品福利| 青娱乐精品在线视频| 91精品1区2区| 国产日产精品1区| 麻豆视频一区二区| 欧美久久高跟鞋激| 一区二区三区精密机械公司| 男人的天堂久久精品| 欧美日韩三级一区二区| 亚洲欧美日韩在线播放| 国产成人精品在线看| 欧美大白屁股肥臀xxxxxx| 亚洲激情图片qvod| 成人动漫在线一区| 日本一区二区三级电影在线观看 | 中文字幕视频一区| 国产精品自拍av| 精品理论电影在线观看| 奇米影视在线99精品| 欧美浪妇xxxx高跟鞋交| 国产婷婷色一区二区三区| 韩国毛片一区二区三区| 久久色成人在线| 国产精品影视在线观看| 国产精品麻豆久久久| 狠狠久久亚洲欧美| 日韩欧美资源站| 另类专区欧美蜜桃臀第一页| 日韩精品一区二区三区三区免费| 图片区小说区区亚洲影院| 欧美日韩国产综合一区二区三区 | 国产精品每日更新| 国产成人精品影视| 国产精品美女一区二区在线观看| 不卡高清视频专区| 国产精品欧美一区喷水| 99精品视频在线观看| 有码一区二区三区| 欧美午夜精品一区| 男女视频一区二区| 色一情一伦一子一伦一区| 亚洲免费在线播放| 91丨porny丨国产| 亚洲激情欧美激情| 日韩亚洲欧美一区| 国产精品18久久久| 国产精品毛片大码女人| 色婷婷综合久色| 麻豆91在线看| 国产精品免费看片| 成人国产精品免费网站| 亚洲人123区| 欧美日韩国产美女| 国产一区二区三区视频在线播放| 中文字幕免费观看一区| 97久久久精品综合88久久| 亚洲一区在线观看免费| 日韩视频一区二区| 国产日本欧洲亚洲| 在线欧美小视频| 成人国产精品免费观看视频| 丝袜美腿亚洲一区| 一二三区精品视频| 国产女主播一区| 欧美精品一区二区三区久久久 | 国产日韩影视精品| 欧美日韩五月天| 色一情一伦一子一伦一区| 从欧美一区二区三区| 美女精品自拍一二三四| 婷婷六月综合亚洲| 亚洲精品写真福利| 国产精品国产三级国产aⅴ入口| 91精品欧美福利在线观看| 欧美性猛片aaaaaaa做受| 99国产麻豆精品| 成人avav影音| 成人综合激情网| 国产乱码精品一区二区三区av| 秋霞国产午夜精品免费视频| 婷婷六月综合网| 亚洲成人你懂的| 午夜精品一区二区三区电影天堂| 亚洲欧美激情一区二区| 国产精品不卡在线| 欧美国产精品专区| 中文字幕乱码日本亚洲一区二区| 国产午夜亚洲精品羞羞网站| 精品国产91洋老外米糕| 精品第一国产综合精品aⅴ| 日韩美女一区二区三区四区| 91精品国产高清一区二区三区 | 欧美高清在线一区二区| 久久久久久久久久久久久夜| 精品不卡在线视频| 久久婷婷一区二区三区| 国产丝袜在线精品| 国产精品色呦呦| 亚洲欧洲一区二区在线播放| 亚洲欧美偷拍卡通变态| 亚洲国产精品一区二区久久| 亚洲国产精品久久久久秋霞影院| 亚洲不卡av一区二区三区| 日韩中文字幕区一区有砖一区 | 久久精子c满五个校花| 久久综合九色综合欧美就去吻 | 国产盗摄一区二区三区| 国产九色sp调教91| 色综合天天综合给合国产| 精品视频资源站| 欧美成人高清电影在线| 久久久777精品电影网影网| 亚洲四区在线观看| 亚洲成人久久影院| 精品伊人久久久久7777人| 国产91精品入口| 欧美天堂一区二区三区| 精品乱码亚洲一区二区不卡| 国产精品国产三级国产有无不卡 | 中文字幕中文字幕在线一区| 亚洲综合在线电影| 另类小说一区二区三区| 成人国产亚洲欧美成人综合网| 欧美视频在线不卡| 久久夜色精品一区| 亚洲精品乱码久久久久久| 日韩成人dvd| 国产精品99久久久久久宅男| 色伊人久久综合中文字幕| 日韩欧美国产一区在线观看| 一区免费观看视频| 精品伊人久久久久7777人| 色香蕉成人二区免费| 精品黑人一区二区三区久久| 亚洲摸摸操操av| 国产综合色视频| 欧美欧美欧美欧美首页| 国产欧美一区二区三区鸳鸯浴| 亚洲妇熟xx妇色黄| 成人免费观看av| 日韩一级大片在线观看| 亚洲综合激情小说| 成人黄色av电影| 欧美一区二区三区播放老司机| 亚洲欧洲日韩综合一区二区| 激情综合色播激情啊| 欧美美女直播网站| 自拍偷拍国产亚洲| 国产乱子伦一区二区三区国色天香| 在线观看成人小视频| 欧美激情一区不卡| 麻豆成人av在线| 欧美日韩亚洲综合在线 | 欧美视频一区二区三区在线观看| 国产欧美日韩视频一区二区| 另类小说图片综合网| 欧美日韩精品一区二区三区蜜桃 | 国产无人区一区二区三区| 青青国产91久久久久久| 欧美亚州韩日在线看免费版国语版| 亚洲国产电影在线观看| 国产精品99久久久久久久女警| 日韩一区二区电影在线| 午夜精品福利一区二区三区蜜桃| 91毛片在线观看| 亚洲日本在线a| 91免费版在线看| 樱花草国产18久久久久| 99精品视频在线观看免费| 国产精品二三区| 99精品偷自拍| 亚洲日本在线视频观看| 日本韩国欧美在线| 亚洲一二三四在线| 欧美日韩中文一区| 免费在线观看视频一区| 日韩一区二区视频|