?? poisson_dirichlet.cpp
字號:
#include "include\vs.h"
#define PI 3.141597
int main() {
double f_0 = 1.0,
// A. 2-D 5x5-point Bode's Integration Formula
bode[5] = {14.0/45.0, 64.0/45.0, 24.0/45.0, 64.0/45.0, 14.0/45.0},
weight[5][5];
for(int i = 0; i < 5; i++)
for(int j = 0; j < 5; j++) weight[i][j] = bode[i] * bode[j];
Quadrature qp(weight[0], 0.0, 1.0, 5, 0.0, 1.0, 5);
J d_a(pow( (1.0/4.0), 2.0)); // per normalized area
// B. Define Basis Functions
H1 x(2, (double*)0, qp),
phi = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE("int, int, Quadrature",
9/*vector size*/, 2/*spatial dim.*/, qp);
for(int m = 0; m < 3; m++)
for(int n = 0; n < 3; n++)
phi[m*3+n] = sin((m+1.0)*PI*x[0])*sin((n+1.0)*PI*x[1]);
// C. Variational Formulation
H0 b_diag(9, (double*)0, qp); // LHS bilinear form is a diagonal matrix
for(int i = 0; i < 9; i++)
b_diag[i] = d(phi[i]).pow(2);
C0 B = b_diag | d_a;
C0 l = ( ((H0)phi) * f_0 ) | d_a; // RHS forced vector
// D. Solutions--the Ritz Coefficients
C0 c(9, (double*)0);
for(int i = 0; i < 9; i++) c[i] = l[i] / B[i];
cout << c << endl;
return 0;
}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -