亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? lagrange_multiplier.cpp

?? 算法的一些集合
?? CPP
字號:
#include "vs.h"
#define L_ 1.0
#define E_ 1.0
#define I_ 1.0
#define f_ 1.0
#define M_ 1.0

int main() {
	{ // One parameter approximation--1. define the matrix element by element
	// A. two-point Trapezoidal Integration Formula
	double weight[2] = {0.5, 0.5};
   Quadrature qp(weight, 0.0, L_, 2);
   J d_l(L_);      // the normalized length of the integration segments

   // B. Define Basis Functions
   H1 x(qp),
      psi = x, w = x;
   double lambda = 1.0;
   // C. Variational Formulation
   H0 b = INTEGRABLE_MATRIX("int, int, Quadrature", 3, 3, qp);
   b[0][0] = (E_*I_)*d(psi)*d(psi);
   b[0][2] = b[2][0] = ((H0)psi)*lambda;
   b[1][2] = b[2][1] = d(w)*lambda;
   b[0][1] = b[1][0] =  b[1][1] = b[2][2] = 0.0;
   C0 B = b | d_l;                // LSH bilinear form
   C0 l(3, (double*)NULL);          // RHS vector
   l[0] = -L_*M_; l[1] = ( ((H0)w)*f_ ) | d_l; l[2] = 0.0;

   // D. Solutions--the Ritz Coefficients
   C0 c = l / B;
   for(int i = 0; i < 3; i++) cout << c[i] << ", "; cout << endl;
   }
	{ // One parameter approximation--2. use matrix concatenation
	// A. two-point Trapezoidal Integration Formula
	double weight[2] = {0.5, 0.5};
   Quadrature qp(weight, 0.0, L_, 2);
   J d_l(L_);      // the normalized length of the integration segments

   // B. Define Basis Functions
   H1 x(qp),
      psi = x, w = x;
   H0 null(qp);
   null = 0.0;
   double lambda = 1.0;
   // C. Variational Formulation
   C0 B = ( ( (E_*I_*(d(psi)*d(psi)))|     null      | (((H0)psi)*lambda) )&
            (     null               |     null      | (d(w)*lambda)      )&
            ( (((H0)psi)*lambda)     | (d(w)*lambda) |     null           )
          ) | d_l;                                 // LSH bilinear form
   C0 l = ( C0(-L_*M_) &
            ( (((H0)w)*f_) | d_l ) &
            C0(0.0)
          );    // RHS vector

   // D. Solutions--the Ritz Coefficients
   C0 c = l / B;
   for(int i = 0; i < 3; i++) cout << c[i] << ", "; cout << endl;
   }
	{ // One parameter approximation--3. use Cartesian basis expression
	// A. two-point Trapezoidal Integration Formula
	double weight[2] = {0.5, 0.5};
   Quadrature qp(weight, 0.0, L_, 2);
   J d_l(L_);      // the normalized length of the integration segments

   // B. Define Basis Functions
   H1 x(qp),
      psi = x, w = x;
   double lambda = 1.0;
   // C. Variational Formulation
   C0 e(3);
   C0 B = ( (E_*I_*(d(psi)*d(psi)))*(e[0]%e[0])+
            0.0                    *(e[0]%e[1])+
            (((H0)psi)*lambda)     *(e[0]%e[2])+
            0.0                    *(e[1]%e[0])+
            0.0                    *(e[1]%e[1])+
            (d(w)*lambda)          *(e[1]%e[2])+
            (((H0)psi)*lambda)     *(e[2]%e[0])+
            (d(w)*lambda)          *(e[2]%e[1])+
            0.0                    *(e[2]%e[2])
          ) | d_l;                                     // LSH bilinear form
   C0 l = ((-L_*M_)*e[0] + ((((H0)w)*f_) | d_l)*e[1] + 0.0*e[2]); // RHS vector

   // D. Solutions--the Ritz Coefficients
   C0 c = l / B;
   for(int i = 0; i < 3; i++) cout << c[i] << ", "; cout << endl;
   }
   { // Two parameter approximation--1. use matrix concatenation for the formulation
	// A. Simpson's Integration Formula
	double weight[3] = {1.0/3.0, 4.0/3.0, 1.0/3.0};
   Quadrature qp(weight, 0.0, L_, 3);
   J d_l(L_/2.0);      // the normalized length of the integration segments

   // B. Define Basis Functions
   H1 x(qp),
      psi    = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE("int, int, Quadrature", 2/*vector size*/, 1/*spatial dim.*/, qp),
      w      = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE("int, int, Quadrature", 2/*vector size*/, 1/*spatial dim.*/, qp),
      lambda = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE("int, int, Quadrature", 2/*vector size*/, 1/*spatial dim.*/, qp);
   psi[0]    = x;   psi[1]    = x.pow(2);  // psi
   w[0]      = x;   w[1]      = x.pow(2);  // w
   lambda[0] = 1.0; lambda[1] = x;         // lambda
   
   // C. Weak Formulation
   H0 null = INTEGRABLE_MATRIX("int, int, Quadrature", 2, 2, qp); null = 0.0;
   C0 B =(( (E_*I_*(d(psi)*(~d(psi))))|        null            | (((H0)psi)%((H0)lambda)) )&
          (      null                 |        null            | (d(w)(0)%((H0)lambda))   )&
          ( (((H0)lambda)%((H0)psi))  | (((H0)lambda)%d(w)(0)) |          null            )
         ) | d_l;
   C0 M_delta_psi(2, (double*)NULL), zero(2, (double*)NULL);
   M_delta_psi[0] = -M_*L_; M_delta_psi[1] = -M_*L_*L_; zero = 0.0;
   C0 l = ( M_delta_psi & ( (((H0)w)*f_) | d_l) & zero);

   // D. Solutions--the Ritz Coefficients
   C0 c = l / B;
   for(int i = 0; i < 6; i++) cout << c[i] << ", "; cout << endl;
   }
   { // Two parameter approximation--2. use referenced vector/matrix for the formulation
	// A. Simpson's Integration Formula
	double weight[3] = {1.0/3.0, 4.0/3.0, 1.0/3.0};
   Quadrature qp(weight, 0.0, L_, 3);
   J d_l(L_/2.0);      // the normalized length of the integration segments

   // B. Define Basis Functions
   H1 x(qp),
      psi    = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE("int, int, Quadrature", 2/*vector size*/, 1/*spatial dim.*/, qp),
      w      = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE("int, int, Quadrature", 2/*vector size*/, 1/*spatial dim.*/, qp),
      lambda = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE("int, int, Quadrature", 2/*vector size*/, 1/*spatial dim.*/, qp);
   psi[0]    = x;   psi[1]    = x.pow(2);  // psi
   w[0]      = x;   w[1]      = x.pow(2);  // w
   lambda[0] = 1.0; lambda[1] = x;         // lambda
   
   // C. Weak Formulation
   H0 b = INTEGRABLE_MATRIX("int, int, Quadrature", 6, 6, qp),
      b00 = INTEGRABLE_MATRIX("int, int, H0&, int, int, Quadrature", 2, 2, b, 0, 0, qp), // referenced submatrix
      b01 = INTEGRABLE_MATRIX("int, int, H0&, int, int, Quadrature", 2, 2, b, 0, 2, qp),
      b02 = INTEGRABLE_MATRIX("int, int, H0&, int, int, Quadrature", 2, 2, b, 0, 4, qp),
      b10 = INTEGRABLE_MATRIX("int, int, H0&, int, int, Quadrature", 2, 2, b, 2, 0, qp),
      b11 = INTEGRABLE_MATRIX("int, int, H0&, int, int, Quadrature", 2, 2, b, 2, 2, qp),
      b12 = INTEGRABLE_MATRIX("int, int, H0&, int, int, Quadrature", 2, 2, b, 2, 4, qp),
      b20 = INTEGRABLE_MATRIX("int, int, H0&, int, int, Quadrature", 2, 2, b, 4, 0, qp),
      b21 = INTEGRABLE_MATRIX("int, int, H0&, int, int, Quadrature", 2, 2, b, 4, 2, qp),
      b22 = INTEGRABLE_MATRIX("int, int, H0&, int, int, Quadrature", 2, 2, b, 4, 4, qp);
   b00 = (E_*I_)*d(psi)*(~d(psi));b01 = 0.0;                  b02 = ((H0)psi)%((H0)lambda);
   b10 = 0.0;                     b11 = 0.0;                  b12 = d(w)(0)%((H0)lambda);
   b20 = ((H0)lambda)%((H0)psi);  b21 = ((H0)lambda)%d(w)(0); b22 = 0.0;
   C0 B = b | d_l;                    // LSH bilinear form
   H0 F = INTEGRABLE_VECTOR("int, Quadrature", 6, qp),
      F0  = INTEGRABLE_VECTOR("int, H0&, int, const Quadrature&", 2, F, 0, qp),                  // referenced vector
      F1  = INTEGRABLE_VECTOR("int, H0&, int, const Quadrature&", 2, F, 2, qp),
      F2  = INTEGRABLE_VECTOR("int, H0&, int, const Quadrature&", 2, F, 4, qp);
   F1 = (((H0)w)*f_); F0 = F2 = 0.0;
   C0 l = F |d_l; // f vector size = 6
   l[0] = -M_*L_; l[1] = -M_*L_*L_;

   // D. Solutions--the Ritz Coefficients
   C0 c = l / B;
   for(int i = 0; i < 6; i++) cout << c[i] << ", "; cout << endl;
   }
   { // Two parameter approximation--3. use equal-partition submatrix/subvector for the formulation
	// A. Simpson's Integration Formula
	double weight[3] = {1.0/3.0, 4.0/3.0, 1.0/3.0};
   Quadrature qp(weight, 0.0, L_, 3);
   J d_l(L_/2.0);      // the normalized length of the integration segments

   // B. Define Basis Functions
   H1 x(qp),
      psi    = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE("int, int, Quadrature", 2/*vector size*/, 1/*spatial dim.*/, qp),
      w      = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE("int, int, Quadrature", 2/*vector size*/, 1/*spatial dim.*/, qp),
      lambda = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE("int, int, Quadrature", 2/*vector size*/, 1/*spatial dim.*/, qp);
   psi[0]    = x;   psi[1]    = x.pow(2);  // psi
   w[0]      = x;   w[1]      = x.pow(2);  // w
   lambda[0] = 1.0; lambda[1] = x;         // lambda
   
   // C. Weak Formulation
   H0 b = INTEGRABLE_MATRIX("int, int, Quadrature", 6, 6, qp),
      bs = INTEGRABLE_SUBMATRIX("int, int, H0&", 2, 2, b);
   bs(0,0) = E_*I_*(d(psi)*(~d(psi)));bs(0,1) = 0.0;                  bs(0,2) = ((H0)psi)%((H0)lambda);
   bs(1,0) = 0.0;                     bs(1,1) = 0.0;                  bs(1,2) = d(w)(0)%((H0)lambda);
   bs(2,0) = ((H0)lambda)%((H0)psi);  bs(2,1) = ((H0)lambda)%d(w)(0); bs(2,2) = 0.0;
   H0 F = INTEGRABLE_VECTOR("int, Quadrature", 6, qp),
      Fs = INTEGRABLE_SUBVECTOR("int, H0&", 2, F);
   Fs(1) = (((H0)w)*f_); Fs(0) = Fs(2) = 0.0;
   C0 B = b | d_l;                    // LSH bilinear form
   C0 l = F | d_l; // f vector size = 6
   l[0] = -M_*L_; l[1] = -M_*L_*L_;

   // D. Solutions--the Ritz Coefficients
   C0 c = l / B;
   for(int i = 0; i < 6; i++) cout << c[i] << ", "; cout << endl;
   }
   {  // Two parameter approximation--4. use Cartesian basis expression for the formulation of the LHS bilinear form
	// A. Simpson's Integration Formula
	double weight[3] = {1.0/3.0, 4.0/3.0, 1.0/3.0};
   Quadrature qp(weight, 0.0, L_, 3);
   J d_l(L_/2.0);      // the normalized length of the integration segments

   // B. Define Basis Functions
   H1 x(qp),
      psi    = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE("int, int, Quadrature", 2/*vector size*/, 1/*spatial dim.*/, qp),
      w      = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE("int, int, Quadrature", 2/*vector size*/, 1/*spatial dim.*/, qp),
      lambda = INTEGRABLE_VECTOR_OF_TANGENT_BUNDLE("int, int, Quadrature", 2/*vector size*/, 1/*spatial dim.*/, qp);
   psi[0]    = x;   psi[1]    = x.pow(2);  // psi
   w[0]      = x;   w[1]      = x.pow(2);  // w
   lambda[0] = 1.0; lambda[1] = x;         // lambda

   // C. Weak Formulation
   C0 e(2), E(3);  // Cartesian basis
   C0 B =+( ((E_*I_)*(d(psi)*(~d(psi))))*((e%e)*(E[0]%E[0]))+
            0.0                         *((e%e)*(E[0]%E[1]))+
            (((H0)psi)%((H0)lambda))    *((e%e)*(E[0]%E[2]))+
            0.0                         *((e%e)*(E[1]%E[0]))+
            0.0                         *((e%e)*(E[1]%E[1]))+
            (d(w)(0)%((H0)lambda))      *((e%e)*(E[1]%E[2]))+
            (((H0)lambda)%((H0)psi))    *((e%e)*(E[2]%E[0]))+
            (((H0)lambda)%d(w)(0))      *((e%e)*(E[2]%E[1]))+
            0.0                         *((e%e)*(E[2]%E[2]))
           ) | d_l; // LSH bilinear form; use operator+() to convert to integrable_matrix_type
   C0 M_delta_psi(2, (double*)NULL); M_delta_psi[0] = -M_*L_; M_delta_psi[1] = -M_*L_*L_;
   C0 l = +( M_delta_psi             *(e*E[0]) +
             ( (((H0)w)*f_) | d_l )*(e*E[1]) +
             0.0                     *(e*E[2])
           );

   // D. Solutions--the Ritz Coefficients
   C0 c = l / B;
   for(int i = 0; i < 6; i++) cout << c[i] << ", "; cout << endl;
   }
   return 0;
}

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产精品资源站在线| 欧美性猛片xxxx免费看久爱| 91亚洲精品乱码久久久久久蜜桃 | 国产精品亲子乱子伦xxxx裸| 亚洲电影在线免费观看| 国产酒店精品激情| 欧美日韩免费不卡视频一区二区三区| 国产偷v国产偷v亚洲高清| 亚洲一区二区综合| 成人短视频下载| 日韩欧美国产综合| 亚洲综合激情小说| 波多野结衣91| 国产欧美va欧美不卡在线| 奇米888四色在线精品| 欧洲精品一区二区三区在线观看| 国产精品美女久久久久久2018| 蜜桃久久久久久久| 欧美在线播放高清精品| 亚洲另类中文字| 成人av网站在线| 日本一区二区三区免费乱视频| 另类小说图片综合网| 欧美精选一区二区| 亚洲综合区在线| 色婷婷综合久久久久中文一区二区 | 国产999精品久久久久久| 日韩欧美国产1| 日韩vs国产vs欧美| 在线成人免费视频| 日本强好片久久久久久aaa| 欧美日韩中文字幕一区| 亚洲h动漫在线| 在线播放视频一区| 青青草国产精品亚洲专区无| 欧美日韩高清一区二区不卡| 亚洲v精品v日韩v欧美v专区| 欧美日韩视频一区二区| 石原莉奈在线亚洲二区| 在线亚洲高清视频| 亚洲国产精品一区二区久久| 欧美吞精做爰啪啪高潮| 视频一区二区国产| 精品va天堂亚洲国产| 国产一区二区三区av电影 | 亚洲欧美日韩中文播放| 色天天综合色天天久久| 亚洲成a人v欧美综合天堂下载| 91精品1区2区| 日韩黄色小视频| 精品久久久久99| 大白屁股一区二区视频| 亚洲黄色免费网站| 欧美日本不卡视频| 极品少妇xxxx精品少妇偷拍| 国产精品美女久久久久久久久久久 | 欧美日韩日日夜夜| 美脚の诱脚舐め脚责91| 国产欧美日韩综合精品一区二区| bt7086福利一区国产| 亚洲一级二级在线| 精品国偷自产国产一区| 成人av网站在线| 亚洲高清在线精品| 久久久综合网站| 99久久er热在这里只有精品66| 亚洲国产一区二区三区| 久久久久高清精品| 欧美日韩一区中文字幕| 国产成人小视频| 偷拍自拍另类欧美| 国产精品亲子乱子伦xxxx裸| 91精品国产综合久久精品app| 国产乱色国产精品免费视频| 亚洲激情图片一区| 久久网这里都是精品| 欧美亚洲国产一区二区三区va| 日本视频一区二区三区| 亚洲欧洲av另类| 精品久久久久一区二区国产| 91玉足脚交白嫩脚丫在线播放| 丝袜美腿亚洲一区二区图片| 国产人伦精品一区二区| 在线电影一区二区三区| 一本色道久久综合精品竹菊| 韩国三级在线一区| 亚洲二区在线观看| 国产精品白丝在线| 久久综合久久99| 欧美伦理视频网站| 97久久超碰精品国产| 国产综合久久久久久鬼色| 亚洲一卡二卡三卡四卡五卡| 中文字幕欧美国产| 精品sm在线观看| 欧美一区二区三区视频| 欧美无砖专区一中文字| 色综合色综合色综合 | 91国产免费观看| 成人av在线看| 国产一区二区三区观看| 久久69国产一区二区蜜臀| 三级成人在线视频| 一区二区久久久久久| 综合婷婷亚洲小说| 中文字幕中文字幕在线一区 | 成人激情黄色小说| 国产精品香蕉一区二区三区| 精久久久久久久久久久| 美女视频一区在线观看| 日韩精品一二三四| 免费三级欧美电影| 麻豆一区二区三| 奇米影视一区二区三区| 日韩成人免费在线| 欧美a级理论片| 麻豆精品在线观看| 国产一区二区三区电影在线观看 | 日韩av一区二区三区| 午夜激情一区二区| 丝袜亚洲另类欧美| 美女视频黄 久久| 激情小说欧美图片| 国模娜娜一区二区三区| 国产盗摄视频一区二区三区| 国产成人精品免费看| 成人黄色小视频在线观看| k8久久久一区二区三区| 一本在线高清不卡dvd| 欧美性色综合网| 91精品国产综合久久福利软件 | 欧美伊人久久大香线蕉综合69| 色综合夜色一区| 欧美在线观看你懂的| 日韩视频中午一区| 久久久亚洲精品石原莉奈| 中文字幕一区二区在线观看| 亚洲欧美视频在线观看| 日精品一区二区三区| 国模冰冰炮一区二区| 99视频有精品| 欧美精品视频www在线观看| 欧美videos大乳护士334| 国产精品美女一区二区在线观看| 亚洲精品乱码久久久久久黑人| 三级不卡在线观看| 成人毛片老司机大片| 在线免费观看不卡av| 欧美一区二区视频免费观看| 国产日韩欧美激情| 亚洲午夜电影在线观看| 国产老妇另类xxxxx| 在线免费观看日本欧美| 久久综合久久久久88| 亚洲男帅同性gay1069| 蜜桃av一区二区在线观看| av不卡在线播放| 日韩欧美在线一区二区三区| 亚洲欧美在线aaa| 日韩电影在线一区二区三区| 岛国精品在线播放| 欧美一区二区大片| 亚洲欧美日韩久久| 国产在线精品一区二区三区不卡 | 欧美成人a∨高清免费观看| 中文字幕制服丝袜一区二区三区| 日韩激情在线观看| 成人美女视频在线看| 欧美成人video| 亚洲h动漫在线| 91麻豆福利精品推荐| 久久亚区不卡日本| 亚洲妇熟xx妇色黄| 成人aa视频在线观看| 精品第一国产综合精品aⅴ| 亚洲大片在线观看| 91亚洲精品久久久蜜桃| 国产亚洲制服色| 蜜桃av噜噜一区| 欧美精品在线观看播放| 一区二区国产盗摄色噜噜| 99re热视频精品| 亚洲国产成人午夜在线一区| 久久国产生活片100| 欧美日本国产一区| 亚洲小少妇裸体bbw| 97久久人人超碰| 一区视频在线播放| 福利一区福利二区| 久久精品一区蜜桃臀影院| 精品一区在线看| 欧美成人三级电影在线| 麻豆91免费看| 日韩网站在线看片你懂的| 日韩精品一卡二卡三卡四卡无卡| 欧美日韩久久久久久| 午夜电影网一区| 在线不卡一区二区| 蜜臀av亚洲一区中文字幕| 欧美一级国产精品|