?? imageadaptor3.cxx
字號:
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: ImageAdaptor3.cxx,v $
Language: C++
Date: $Date: 2003/09/10 14:29:51 $
Version: $Revision: 1.10 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
// Software Guide : BeginLatex
//
// This example illustrates the use of \doxygen{ImageAdaptor}
// to obtain access to the components of a vector image.
// Specifically, it shows how to manage pixel accessors containing
// internal parameters. In this example we create an image of vectors by using
// a gradient filter. Then, we use an image adaptor to extract one of the
// components of the vector image. The vector type used by the gradient filter
// is the \doxygen{CovariantVector} class.
//
// We start by including the relevant headers.
//
// \index{itk::ImageAdaptor!Instantiation}
// \index{itk::ImageAdaptor!Header}
// \index{itk::PixelAccessors!with parameters}
//
// Software Guide : EndLatex
#include "itkImage.h"
#include "itkImageAdaptor.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"
// Software Guide : BeginCodeSnippet
#include "itkCovariantVector.h"
#include "itkGradientRecursiveGaussianImageFilter.h"
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// A pixel accessors class may have internal parameters that affect the
// operations performed on input pixel data. Image adaptors support
// parameters in their internal pixel accessor by using
// the assignment operator. Any pixel accessor which has internal
// parameters must therefore implement the assignment operator.
// The following defines a pixel accessor for extracting
// components from a vector pixel. The
// \code{m\_Index} member variable is used to select the vector component
// to be returned.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
class VectorPixelAccessor
{
public:
typedef itk::CovariantVector<float,2> InternalType;
typedef float ExternalType;
void operator=( const VectorPixelAccessor & vpa )
{
m_Index = vpa.m_Index;
}
ExternalType Get( const InternalType & input ) const
{
return static_cast<ExternalType>( input[ m_Index ] );
}
void SetIndex( unsigned int index )
{
m_Index = index;
}
private:
unsigned int m_Index;
};
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The \code{Get()} method simply returns the \emph{i}-th component of
// the vector as indicated by the index. The assignment operator transfers the
// value of the index member variable from one instance of the pixel accessor
// to another.
//
// Software Guide : EndLatex
//-------------------------
//
// Main code
//
//-------------------------
int main( int argc, char *argv[] )
{
if( argc < 4 )
{
std::cerr << "Usage: " << std::endl;
std::cerr << "ImageAdaptor3 inputFileName outputComponentFileName ";
std::cerr << " indexOfComponentToExtract" << std::endl;
return -1;
}
// Software Guide : BeginLatex
//
// In order to test the pixel accessor, we generate an image of vectors using
// the \doxygen{GradientRecursiveGaussianImageFilter}. This
// filter produces an output image of \doxygen{CovariantVector} pixel type.
// Covariant vectors are the natural representation for gradients since they
// are the equivalent of normals to iso-values manifolds.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef unsigned char InputPixelType;
const unsigned int Dimension = 2;
typedef itk::Image< InputPixelType, Dimension > InputImageType;
typedef itk::CovariantVector< float, Dimension > VectorPixelType;
typedef itk::Image< VectorPixelType, Dimension > VectorImageType;
typedef itk::GradientRecursiveGaussianImageFilter< InputImageType,
VectorImageType> GradientFilterType;
GradientFilterType::Pointer gradient = GradientFilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We instantiate the ImageAdaptor using the vector image type as
// the first template parameter and the pixel accessor as the second
// template parameter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::ImageAdaptor< VectorImageType,
VectorPixelAccessor > ImageAdaptorType;
ImageAdaptorType::Pointer adaptor = ImageAdaptorType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The index of the component to be extracted is specified
// from the command line. In the following, we create the accessor,
// set the index and connect the accessor to the image adaptor using
// the \code{SetPixelAccessor()} method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
VectorPixelAccessor accessor;
accessor.SetIndex( atoi( argv[3] ) );
adaptor->SetPixelAccessor( accessor );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We create a reader to load the image specified from the
// command line and pass its output as the input to the gradient filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::ImageFileReader< InputImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
gradient->SetInput( reader->GetOutput() );
reader->SetFileName( argv[1] );
gradient->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We now connect the output of the gradient filter as input to the
// image adaptor. The adaptor emulates a scalar image whose pixel values
// are taken from the selected component of the vector image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
adaptor->SetImage( gradient->GetOutput() );
// Software Guide : EndCodeSnippet
typedef itk::Image< unsigned char, Dimension > OutputImageType;
typedef itk::RescaleIntensityImageFilter< ImageAdaptorType, OutputImageType>
RescalerType;
RescalerType::Pointer rescaler = RescalerType::New();
typedef itk::ImageFileWriter< OutputImageType > WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetFileName( argv[2] );
rescaler->SetOutputMinimum( 0 );
rescaler->SetOutputMaximum( 255 );
rescaler->SetInput( adaptor );
writer->SetInput( rescaler->GetOutput() );
writer->Update();
// Software Guide : BeginLatex
//
// \begin{figure} \center
// \includegraphics[width=0.32\textwidth]{BrainProtonDensitySlice.eps}
// \includegraphics[width=0.32\textwidth]{ImageAdaptorToVectorImageComponentX.eps}
// \includegraphics[width=0.32\textwidth]{ImageAdaptorToVectorImageComponentY.eps}
// \itkcaption[Image Adaptor to Vector Image]{Using
// ImageAdaptor to access components of a vector
// image. The input image on the left was passed through a gradient image
// filter and the two components of the resulting vector image were extracted
// using an image adaptor.}
// \label{fig:ImageAdaptorToVectorImage}
// \end{figure}
//
// As in the previous example, we rescale the scalar image before writing
// the image out to file. Figure~\ref{fig:ImageAdaptorToVectorImage}
// shows the result of applying the example code for extracting both
// components of a two dimensional gradient.
//
// Software Guide : EndLatex
return 0;
}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -