?? zernfun.m
字號:
function z = zernfun(n,m,r,theta,nflag)
%ZERNFUN Zernike functions of order N and frequency M on the unit circle.
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N
% and angular frequency M, evaluated at positions (R,THETA) on the
% unit circle. N is a vector of positive integers (including 0), and
% M is a vector with the same number of elements as N. Each element
% k of M must be a positive integer, with possible values M(k) = -N(k)
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1,
% and THETA is a vector of angles. R and THETA must have the same
% length. The output Z is a matrix with one column for every (N,M)
% pair, and one row for every (R,THETA) pair.
%
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi),
% with delta(m,0) the Kronecker delta, is chosen so that the integral
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1,
% and theta=0 to theta=2*pi) is unity. For the non-normalized
% polynomials, max(Znm(r=1,theta))=1 for all [n,m].
%
% The Zernike functions are an orthogonal basis on the unit circle.
% They are used in disciplines such as astronomy, optics, and
% optometry to describe functions on a circular domain.
%
% The following table lists the first 15 Zernike functions.
%
% n m Zernike function Normalization
% --------------------------------------------------
% 0 0 1 1
% 1 1 r * cos(theta) 2
% 1 -1 r * sin(theta) 2
% 2 -2 r^2 * cos(2*theta) sqrt(6)
% 2 0 (2*r^2 - 1) sqrt(3)
% 2 2 r^2 * sin(2*theta) sqrt(6)
% 3 -3 r^3 * cos(3*theta) sqrt(8)
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8)
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8)
% 3 3 r^3 * sin(3*theta) sqrt(8)
% 4 -4 r^4 * cos(4*theta) sqrt(10)
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10)
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5)
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10)
% 4 4 r^4 * sin(4*theta) sqrt(10)
% --------------------------------------------------
%
% Example 1:
%
% % Display the Zernike function Z(n=5,m=1)
% x = -1:0.01:1;
% [X,Y] = meshgrid(x,x);
% [theta,r] = cart2pol(X,Y);
% idx = r<=1;
% z = nan(size(X));
% z(idx) = zernfun(5,1,r(idx),theta(idx));
% figure
% pcolor(x,x,z), shading interp
% axis square, colorbar
% title('Zernike function Z_5^1(r,\theta)')
%
% Example 2:
%
% % Display the first 10 Zernike functions
% x = -1:0.01:1;
% [X,Y] = meshgrid(x,x);
% [theta,r] = cart2pol(X,Y);
% idx = r<=1;
% z = nan(size(X));
% n = [0 1 1 2 2 2 3 3 3 3];
% m = [0 -1 1 -2 0 2 -3 -1 1 3];
% Nplot = [4 10 12 16 18 20 22 24 26 28];
% y = zernfun(n,m,r(idx),theta(idx));
% figure('Units','normalized')
% for k = 1:10
% z(idx) = y(:,k);
% subplot(4,7,Nplot(k))
% pcolor(x,x,z), shading interp
% set(gca,'XTick',[],'YTick',[])
% axis square
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}'])
% end
%
% See also ZERNPOL, ZERNFUN2.
% Paul Fricker 11/13/2006
% Check and prepare the inputs:
% -----------------------------
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) )
error('zernfun:NMvectors','N and M must be vectors.')
end
if length(n)~=length(m)
error('zernfun:NMlength','N and M must be the same length.')
end
n = n(:);
m = m(:);
if any(mod(n-m,2))
error('zernfun:NMmultiplesof2', ...
'All N and M must differ by multiples of 2 (including 0).')
end
if any(m>n)
error('zernfun:MlessthanN', ...
'Each M must be less than or equal to its corresponding N.')
end
if any( r>1 | r<0 )
error('zernfun:Rlessthan1','All R must be between 0 and 1.')
end
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) )
error('zernfun:RTHvector','R and THETA must be vectors.')
end
r = r(:);
theta = theta(:);
length_r = length(r);
if length_r~=length(theta)
error('zernfun:RTHlength', ...
'The number of R- and THETA-values must be equal.')
end
% Check normalization:
% --------------------
if nargin==5 && ischar(nflag)
isnorm = strcmpi(nflag,'norm');
if ~isnorm
error('zernfun:normalization','Unrecognized normalization flag.')
end
else
isnorm = false;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Compute the Zernike Polynomials
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Determine the required powers of r:
% -----------------------------------
m_abs = abs(m);
rpowers = [];
for j = 1:length(n)
rpowers = [rpowers m_abs(j):2:n(j)];
end
rpowers = unique(rpowers);
% Pre-compute the values of r raised to the required powers,
% and compile them in a matrix:
% -----------------------------
if rpowers(1)==0
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false);
rpowern = cat(2,rpowern{:});
rpowern = [ones(length_r,1) rpowern];
else
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false);
rpowern = cat(2,rpowern{:});
end
% Compute the values of the polynomials:
% --------------------------------------
y = zeros(length_r,length(n));
for j = 1:length(n)
s = 0:(n(j)-m_abs(j))/2;
pows = n(j):-2:m_abs(j);
for k = length(s):-1:1
p = (1-2*mod(s(k),2))* ...
prod(2:(n(j)-s(k)))/ ...
prod(2:s(k))/ ...
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ...
prod(2:((n(j)+m_abs(j))/2-s(k)));
idx = (pows(k)==rpowers);
y(:,j) = y(:,j) + p*rpowern(:,idx);
end
if isnorm
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi);
end
end
% END: Compute the Zernike Polynomials
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Compute the Zernike functions:
% ------------------------------
idx_pos = m>0;
idx_neg = m<0;
z = y;
if any(idx_pos)
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)');
end
if any(idx_neg)
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)');
end
% EOF zernfun
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -