亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? fspec.pas

?? Delphi 的數學控件
?? PAS
?? 第 1 頁 / 共 3 頁
字號:
{ **********************************************************************
  *                            Unit FSPEC.PAS                          *
  *                             Version 1.2d                           *
  *                       (c) J. Debord, May 2003                      *
  **********************************************************************
             Special functions and probability distributions
  **********************************************************************
  Error handling: The global variable MathError returns the error code
  from the last function evaluation. It must be checked immediately
  after a function call:

       Y := f(X);        (* f is one of the functions of the library *)
       if MathError = FN_OK then ...

  The possible error codes are the following:

     ---------------------------------------------
     Error code   Value  Significance
     ---------------------------------------------
     FN_OK          0    No error
     FN_DOMAIN     -1    Argument domain error
     FN_SING       -2    Function singularity
     FN_OVERFLOW   -3    Overflow range error
     FN_UNDERFLOW  -4    Underflow range error
     FN_TLOSS      -5    Total loss of precision
     FN_PLOSS      -6    Partial loss of precision
     ---------------------------------------------

  **********************************************************************
  Most functions are translated C code from Cephes math library
  by S. Moshier (http://www.moshier.net)
  ********************************************************************** }

unit fspec;

interface

uses
  fmath;

{ ----------------------------------------------------------------------
  Table of factorials
  ---------------------------------------------------------------------- }

const
  NFACT = 33;

var
  FactArray : array[0..NFACT] of Float =
    (1.0,
     1.0,
     2.0,
     6.0,
     24.0,
     120.0,
     720.0,
     5040.0,
     40320.0,
     362880.0,
     3628800.0,
     39916800.0,
     479001600.0,
     6227020800.0,
     87178291200.0,
     1307674368000.0,
     20922789888000.0,
     355687428096000.0,
     6402373705728000.0,
     121645100408832000.0,
     2432902008176640000.0,
     51090942171709440000.0,
     1124000727777607680000.0,
     25852016738884976640000.0,
     620448401733239439360000.0,
     15511210043330985984000000.0,
     403291461126605635584000000.0,
     10888869450418352160768000000.0,
     304888344611713860501504000000.0,
     8841761993739701954543616000000.0,
     265252859812191058636308480000000.0,
     8222838654177922817725562880000000.0,
     263130836933693530167218012160000000.0,
     8683317618811886495518194401280000000.0);

{ ----------------------------------------------------------------------
  Special functions
  ---------------------------------------------------------------------- }

function Fact(N : Integer) : Float;         { Factorial }
function Binomial(N, K : Integer) : Float;  { Binomial coef. C(N,K) }
function Gamma(X : Float) : Float;          { Gamma function }
function SgnGamma(X : Float) : Integer;     { Sign of Gamma function }
function IGamma(A, X : Float) : Float;      { Incomplete Gamma function }
function JGamma(A, X : Float) : Float;      { Complement of IGamma }
function Beta(X, Y : Float) : Float;        { Beta function }
function IBeta(A, B, X : Float) : Float;    { Incomplete Beta function }
function Erf(X : Float) : Float;            { Error function }
function Erfc(X : Float) : Float;           { Complement of Erf }

function LnGamma(X : Float)   : Float;   overload;  { Log(|Gamma(X)|) }
function LnGamma(Z : Complex) : Complex; overload;

{ ----------------------------------------------------------------------
  Binomial distribution with probability P and number of repetitions N
  ---------------------------------------------------------------------- }

function PBinom(N : Integer; P : Float; K : Integer) : Float; { Prob(X = K) }
function FBinom(N : Integer; P : Float; K : Integer) : Float; { Prob(X <= K) }

{ ----------------------------------------------------------------------
  Poisson distribution with mean Mu
  ---------------------------------------------------------------------- }

function PPoisson(Mu : Float; K : Integer) : Float;  { Prob(X = K) }
function FPoisson(Mu : Float; K : Integer) : Float;  { Prob(X <= K) }

{ ----------------------------------------------------------------------
  Standard normal distribution
  ---------------------------------------------------------------------- }

function DNorm(X : Float) : Float;    { Density of standard normal }
function FNorm(X : Float) : Float;    { Prob(U <= X) }
function PNorm(X : Float) : Float;    { Prob(|U| >= |X|) }
function InvNorm(P : Float) : Float;  { Inverse of FNorm : returns X
                                        such that Prob(U <= X) = P}

{ ----------------------------------------------------------------------
  Student distribution with Nu d.o.f.
  ---------------------------------------------------------------------- }

function DStudent(Nu : Integer; X : Float) : Float;  { Density of t }
function FStudent(Nu : Integer; X : Float) : Float;  { Prob(t <= X) }
function PStudent(Nu : Integer; X : Float) : Float;  { Prob(|t| >= |X|) }

{ ----------------------------------------------------------------------
  Khi-2 distribution with Nu d.o.f.
  ---------------------------------------------------------------------- }

function DKhi2(Nu : Integer; X : Float) : Float;  { Density of Khi2 }
function FKhi2(Nu : Integer; X : Float) : Float;  { Prob(Khi2 <= X) }
function PKhi2(Nu : Integer; X : Float) : Float;  { Prob(Khi2 >= X) }

{ ----------------------------------------------------------------------
  Fisher-Snedecor distribution with Nu1 and Nu2 d.o.f.
  ---------------------------------------------------------------------- }

function DSnedecor(Nu1, Nu2 : Integer; X : Float) : Float;  { Density of F }
function FSnedecor(Nu1, Nu2 : Integer; X : Float) : Float;  { Prob(F <= X) }
function PSnedecor(Nu1, Nu2 : Integer; X : Float) : Float;  { Prob(F >= X) }

{ ----------------------------------------------------------------------
  Exponential distribution
  ---------------------------------------------------------------------- }

function DExpo(A, X : Float) : Float;  { Density of exponential distrib. }
function FExpo(A, X : Float) : Float;  { Prob( <= X) }

{ ----------------------------------------------------------------------
  Beta distribution
  ---------------------------------------------------------------------- }

function DBeta(A, B, X : Float) : Float;   { Density of Beta distribution }
function FBeta(A, B, X : Float) : Float;   { Prob( <= X) }

{ ----------------------------------------------------------------------
  Gamma distribution
  ---------------------------------------------------------------------- }

function DGamma(A, B, X : Float) : Float;  { Density of Gamma distribution }
function FGamma(A, B, X : Float) : Float;  { Prob( <= X) }

{ ********************************************************************** }

implementation

{ ----------------------------------------------------------------------
  Error handling function
  ---------------------------------------------------------------------- }

  function DefaultVal(ErrCode : Integer; Default : Float) : Float;
  { Sets the global variable MathError and the function default value
    according to the error code }
  begin
    MathError := ErrCode;
    DefaultVal := Default;
  end;

{ ----------------------------------------------------------------------
  Special functions
  ---------------------------------------------------------------------- }

const { Used by IGamma and IBeta }
  BIG    = 9.223372036854775808E18;
  BIGINV = 1.084202172485504434007E-19;

type
  TabCoef = array[0..9] of Float;

  function PolEvl(var X : Float; Coef : TabCoef; N : Integer) : Float;
{ ----------------------------------------------------------------------
  Evaluates polynomial of degree N:

			2	   N
    y  =  C  + C x + C x  +...+ C x
	   0	1     2 	 N

  Coefficients are stored in reverse order:

  Coef[0] = C  , ..., Coef[N] = C
             N                   0

  The function P1Evl() assumes that Coef[N] = 1.0 and is
  omitted from the array. Its calling arguments are
  otherwise the same as PolEvl().
  ---------------------------------------------------------------------- }
  var
    Ans : Float;
    I : Integer;
  begin
    Ans := Coef[0];
    for I := 1 to N do
      Ans := Ans * X + Coef[I];
    PolEvl := Ans;
  end;

  function P1Evl(var X : Float; Coef : TabCoef; N : Integer) : Float;
{ ----------------------------------------------------------------------
  Evaluate polynomial when coefficient of X is 1.0.
  Otherwise same as PolEvl.
  ---------------------------------------------------------------------- }
  var
    Ans : Float;
    I : Integer;
  begin
    Ans := X + Coef[0];
    for I := 1 to N - 1 do
      Ans := Ans * X + Coef[I];
    P1Evl := Ans;
  end;

  function SgnGamma(X : Float) : Integer;
  begin
    if X > 0.0 then
      SgnGamma := 1
    else if Odd(Trunc(Abs(X))) then
      SgnGamma := 1
    else
      SgnGamma := - 1;
  end;

  function Stirf(X : Float) : Float;
  { Stirling's formula for the gamma function
    Gamma(x) = Sqrt(2*Pi) x^(x-.5) exp(-x) (1 + 1/x P(1/x))
    where P(x) is a polynomial }
  const
    STIR : TabCoef = (
        7.147391378143610789273E-4,
      - 2.363848809501759061727E-5,
      - 5.950237554056330156018E-4,
        6.989332260623193171870E-5,
        7.840334842744753003862E-4,
      - 2.294719747873185405699E-4,
      - 2.681327161876304418288E-3,
        3.472222222230075327854E-3,
        8.333333333333331800504E-2,
        0);

  var
    W, P : Float;
  begin
    W := 1.0 / X;
    if X > 1024.0 then
      begin
        P := 6.97281375836585777429E-5 * W + 7.84039221720066627474E-4;
        P := P * W - 2.29472093621399176955E-4;
        P := P * W - 2.68132716049382716049E-3;
        P := P * W + 3.47222222222222222222E-3;
        P := P * W + 8.33333333333333333333E-2;
      end
    else
      P := PolEvl(W, STIR, 8);
    Stirf := SQRT2PI * Exp((X - 0.5) * Ln(X) - X) * (1.0 + W * P);
  end;

  function GamSmall(X1, Z : Float) : Float;
  { Gamma function for small values of the argument }
  const
    S : TabCoef = (
      - 1.193945051381510095614E-3,
        7.220599478036909672331E-3,
      - 9.622023360406271645744E-3,
      - 4.219773360705915470089E-2,
        1.665386113720805206758E-1,
      - 4.200263503403344054473E-2,
      - 6.558780715202540684668E-1,
        5.772156649015328608253E-1,
        1.000000000000000000000E0,
        0);

    SN : TabCoef = (
        1.133374167243894382010E-3,
        7.220837261893170325704E-3,
        9.621911155035976733706E-3,
      - 4.219773343731191721664E-2,
      - 1.665386113944413519335E-1,
      - 4.200263503402112910504E-2,
        6.558780715202536547116E-1,
        5.772156649015328608727E-1,
      - 1.000000000000000000000E0,
        0);

  var
    P : Float;
  begin
    if X1 = 0.0 then
      begin
        GamSmall := DefaultVal(FN_SING, MAXNUM);
        Exit;
      end;
    if X1 < 0.0 then
      begin
        X1 := - X1;
        P := PolEvl(X1, SN, 8);
      end
    else
      P := PolEvl(X1, S, 8);
    GamSmall := Z / (X1 * P);
  end;

  function StirfL(X : Float) : Float;
  { Approximate Ln(Gamma) by Stirling's formula, for X >= 13 }
  const
    P : TabCoef = (
        4.885026142432270781165E-3,
      - 1.880801938119376907179E-3,
        8.412723297322498080632E-4,
      - 5.952345851765688514613E-4,
        7.936507795855070755671E-4,
      - 2.777777777750349603440E-3,
        8.333333333333331447505E-2,
        0, 0, 0);

  var
    Q, W : Float;
  begin
    Q := Ln(X) * (X - 0.5) - X;
    Q := Q + LNSQRT2PI;
    if X > 1.0E+10 then
      StirfL := Q
    else
      begin
        W := 1.0 / Sqr(X);
        StirfL := Q + PolEvl(W, P, 6) / X;
      end;
  end;

  function Gamma(X : Float) : Float;
  const
    P : TabCoef = (
      4.212760487471622013093E-5,
      4.542931960608009155600E-4,
      4.092666828394035500949E-3,
      2.385363243461108252554E-2,
      1.113062816019361559013E-1,
      3.629515436640239168939E-1,
      8.378004301573126728826E-1,
      1.000000000000000000009E0,
      0, 0);

    Q : TabCoef = (
      - 1.397148517476170440917E-5,
        2.346584059160635244282E-4,
      - 1.237799246653152231188E-3,
      - 7.955933682494738320586E-4,
        2.773706565840072979165E-2,
      - 4.633887671244534213831E-2,
      - 2.243510905670329164562E-1,
        4.150160950588455434583E-1,
        9.999999999999999999908E-1,
        0);

  var
    SgnGam, N : Integer;
    A, X1, Z : Float;
  begin
    MathError := FN_OK;
    SgnGam := SgnGamma(X);

    if (X = 0.0) or ((X < 0.0) and (Frac(X) = 0.0)) then
      begin
        Gamma := DefaultVal(FN_SING, SgnGam * MAXNUM);
        Exit;
      end;

    if X > MAXGAM then
      begin
        Gamma := DefaultVal(FN_OVERFLOW, MAXNUM);
        Exit;
      end;

    A := Abs(X);
    if A > 13.0 then
      begin
        if X < 0.0 then
          begin
            N := Trunc(A);
            Z := A - N;
            if Z > 0.5 then
              begin
                N := N + 1;
                Z := A - N;
              end;
            Z := Abs(A * Sin(PI * Z)) * Stirf(A);
            if Z <= PI / MAXNUM then
              begin
                Gamma := DefaultVal(FN_OVERFLOW, SgnGam * MAXNUM);
                Exit;
              end;
            Z := PI / Z;
          end
        else
          Z := Stirf(X);
        Gamma := SgnGam * Z;
      end
    else
      begin
        Z := 1.0;
        X1 := X;
        while X1 >= 3.0 do
          begin
            X1 := X1 - 1.0;
            Z := Z * X1;
          end;
        while X1 < - 0.03125 do
          begin
            Z := Z / X1;
            X1 := X1 + 1.0;
          end;
        if X1 <= 0.03125 then
          Gamma := GamSmall(X1, Z)
        else
          begin
            while X1 < 2.0 do
              begin
                Z := Z / X1;
                X1 := X1 + 1.0;
              end;
            if (X1 = 2.0) or (X1 = 3.0) then
              Gamma := Z
            else
              begin
                X1 := X1 - 2.0;
                Gamma := Z * PolEvl(X1, P, 7) / PolEvl(X1, Q, 8);
              end;
          end;
      end;
  end;

  function LnGamma(X : Float) : Float; overload;
  const
    P : TabCoef = (
      - 2.163690827643812857640E3,
      - 8.723871522843511459790E4,
      - 1.104326814691464261197E6,
      - 6.111225012005214299996E6,
      - 1.625568062543700591014E7,
      - 2.003937418103815175475E7,
      - 8.875666783650703802159E6,
        0, 0, 0);

    Q : TabCoef = (
      - 5.139481484435370143617E2,
      - 3.403570840534304670537E4,
      - 6.227441164066219501697E5,
      - 4.814940379411882186630E6,
      - 1.785433287045078156959E7,
      - 3.138646407656182662088E7,
      - 2.099336717757895876142E7,
        0, 0, 0);

  var
    N, SgnGam : Integer;
    A, X1, Z : Float;
  begin
    MathError := FN_OK;
    SgnGam := SgnGamma(X);

    if (X = 0.0) or ((X < 0.0) and (Frac(X) = 0.0)) then
      begin
        LnGamma := DefaultVal(FN_SING, MAXNUM);
        Exit;
      end;

    if X > MAXLGM then
      begin
        LnGamma := DefaultVal(FN_OVERFLOW, MAXNUM);
        Exit;
      end;

    A := Abs(X);
    if A > 34.0 then
      begin
        if X < 0.0 then
          begin
            N := Trunc(A);
            Z := A - N;
            if Z > 0.5 then
              begin
                N := N + 1;
                Z := N - A;
              end;

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲精品视频免费看| 91国产免费观看| 国产性做久久久久久| 国产成人av资源| 亚洲视频1区2区| 欧美日韩午夜精品| 日本vs亚洲vs韩国一区三区二区| 日韩视频一区二区在线观看| 久久国产精品色| 最新不卡av在线| 欧美三区免费完整视频在线观看| 日韩高清不卡一区二区三区| www久久久久| 色婷婷综合久久久久中文一区二区 | 国产欧美一二三区| 99精品黄色片免费大全| 偷拍日韩校园综合在线| 精品福利av导航| 91免费视频网址| 日本欧美大码aⅴ在线播放| 久久久久九九视频| 欧美性高清videossexo| 理论片日本一区| 亚洲色欲色欲www| 欧美成人精品高清在线播放| 成人污视频在线观看| 亚洲成人你懂的| 国产日韩欧美高清| 欧美猛男男办公室激情| 国产不卡在线视频| 日韩影院在线观看| 国产精品国产精品国产专区不蜜| 欧美午夜不卡视频| zzijzzij亚洲日本少妇熟睡| 日韩极品在线观看| 亚洲女子a中天字幕| 精品国产污污免费网站入口| 欧美性欧美巨大黑白大战| 国产乱国产乱300精品| 亚洲3atv精品一区二区三区| 久久久99精品久久| 91精品综合久久久久久| 99r国产精品| 国产在线国偷精品产拍免费yy| 亚洲一区二区三区四区五区黄| 日韩精品自拍偷拍| 欧美精品欧美精品系列| 91免费视频网址| 国产成人综合亚洲91猫咪| 日韩和欧美一区二区三区| 亚洲视频免费观看| 国产精品久久久久久久久快鸭 | 久久国产精品区| 性感美女久久精品| 亚洲男人天堂一区| 中文字幕亚洲精品在线观看| 久久九九久久九九| 欧美电视剧免费观看| 88在线观看91蜜桃国自产| 在线免费观看一区| 99久久免费精品| 成人黄色免费短视频| 国产在线播放一区| 国内精品国产成人| 国产毛片精品一区| 精品综合免费视频观看| 久久99蜜桃精品| 久久国产精品色婷婷| 日本sm残虐另类| 老司机免费视频一区二区| 日韩不卡一二三区| 日韩二区在线观看| 麻豆精品视频在线观看免费 | 久久先锋资源网| 精品国产91亚洲一区二区三区婷婷| 日韩一区二区三区免费观看| 欧美日韩1区2区| 欧美一区二区三区在线电影| 91精品婷婷国产综合久久| 欧美日韩国产片| 91精品国产美女浴室洗澡无遮挡| 欧美日本韩国一区| 91精品综合久久久久久| 日韩一区二区影院| 久久久www免费人成精品| 久久久久国产精品人| 欧美经典三级视频一区二区三区| 国产精品色婷婷久久58| 自拍偷拍国产精品| 亚洲午夜精品一区二区三区他趣| 亚洲第一电影网| 精品影院一区二区久久久| 国产精品影视网| 91热门视频在线观看| 在线观看av不卡| 91精品婷婷国产综合久久性色 | 高清shemale亚洲人妖| 99久久久无码国产精品| 欧美日韩亚洲另类| 精品99久久久久久| 综合久久久久综合| 日韩国产欧美在线播放| 国产麻豆91精品| 97精品视频在线观看自产线路二| 色婷婷综合久久久久中文| 欧美年轻男男videosbes| 欧美成人bangbros| 国产精品九色蝌蚪自拍| 午夜视频在线观看一区| 国产高清在线精品| 欧美探花视频资源| 久久久久国产成人精品亚洲午夜 | 亚洲国产综合在线| 美国三级日本三级久久99| 成年人国产精品| 欧美久久久久久久久中文字幕| 久久免费偷拍视频| 亚洲成人激情av| 国产高清在线精品| 欧美丰满美乳xxx高潮www| 国产日本一区二区| 亚洲444eee在线观看| 成人av网站免费观看| 欧美一区二区三区公司| 最新热久久免费视频| 久久er精品视频| 欧美亚日韩国产aⅴ精品中极品| 精品噜噜噜噜久久久久久久久试看| 亚洲人成精品久久久久| 久久99九九99精品| 欧美亚洲综合一区| 国产精品色呦呦| 激情国产一区二区| 欧美日韩在线播放三区四区| 国产欧美综合在线观看第十页 | 亚洲欧美另类图片小说| 久久99热这里只有精品| 欧美日韩免费一区二区三区| 国产精品婷婷午夜在线观看| 美日韩一区二区| 7878成人国产在线观看| 一区二区三区四区在线播放 | 中文字幕av一区二区三区免费看| 视频一区视频二区中文字幕| 91在线观看高清| 国产免费成人在线视频| 国产一区久久久| 日韩一区二区三免费高清| 亚洲bdsm女犯bdsm网站| 在线免费视频一区二区| 亚洲欧美日韩久久精品| 成人免费看视频| 国产性色一区二区| 国产成人亚洲精品狼色在线| 精品奇米国产一区二区三区| 日韩福利电影在线| 欧美一区二区三区免费视频| 亚洲丰满少妇videoshd| 91福利社在线观看| 一区二区三区国产精品| 91国产丝袜在线播放| 亚洲精品高清视频在线观看| 色综合久久综合网97色综合| 综合在线观看色| 99久久精品免费看国产| 中文字幕一区二区三区视频| 成人高清视频在线观看| 国产精品对白交换视频| www.av精品| 亚洲综合一二区| 欧美日韩小视频| 奇米影视一区二区三区小说| 日韩欧美资源站| 国内精品国产成人国产三级粉色| 久久久综合精品| 成人一级片在线观看| 亚洲国产精品t66y| 91偷拍与自偷拍精品| 自拍偷拍亚洲激情| 欧美日韩一区视频| 蜜臀99久久精品久久久久久软件| 精品久久久久久亚洲综合网| 国产一区二区在线观看视频| 国产日韩精品视频一区| 91丨porny丨国产| 午夜电影网亚洲视频| 欧美刺激午夜性久久久久久久| 麻豆成人av在线| 国产亚洲精品bt天堂精选| www.欧美色图| 亚洲精品国产高清久久伦理二区| 欧美日韩综合在线| 九色综合狠狠综合久久| 国产农村妇女毛片精品久久麻豆 | 国产精品激情偷乱一区二区∴| 色综合欧美在线视频区| 日韩激情一区二区| 国产女主播视频一区二区| 在线视频一区二区三| 蜜桃视频一区二区三区|