?? coder_bpb.c
字號:
//#define ADD_CUR_WEIGHTS // hurts !?
//#define LOCAL_LENS // hurts
#define SCALEDOWN_LENS
#define SCALEDOWN_SHIFT 0 // makes len* the very previous!
//#define LOG
#define FIFTH_SHAPE // helps a peetle
//#define XX_SHAPES // hurts a tad
//#define NO_XX // X3 and X4 help an awful lot
#define BIG_SHAPE_CNTX // helps 0.006
// #define BIG_SIGN_CONTEXT // hurts a teeny
/*****
these are the weights for combining the various
moments to make an estimate of the local activity
context = ((CA * VD + CB * P + CC * N + CD * W + CE * NW + CF * NE + CG * X1 + CH * X2 + CI * X3 + CJ * X4)>>8)
<> these need to be trained on a test set (not trivial)
and very important ! little random changes make 0.01 bpp diff
******/
#define C1A 64
#define C1B 64
#define C1C 64
#define C1D 64
#define C1E 64
#define C1F 64
#define C1G 64
#define C1H 64
#define C1I 64
#define C1J 64
#define C2A 33
#define C2B 33
#define C2C 33
#define C2D 33
#define C2E 33
#define C2F 33
#define C2G 33
#define C2H 33
#define C2I 33
#define C2J 33
#define C3A 300
#define C3B 170
#define C3C 40
#define C3D 40
#define C3E 40
#define C3F 40
#define C3G 20
#define C3H 20
#define C3I 0
#define C3J 0
#define C4A 64
#define C4B 32
#define C4C 64
#define C4D 64
#define C4E 64
#define C4F 64
#define C4G 32
#define C4H 32
#define C4I 32
#define C4J 32
/*****
binary version : codes each bit-pel as a separate binary event
coding signs helps about 0.03 (better than the 0.02 observed
in earlier more primitive sign coders)
our LOE :
don't actually compare the four contexts' MPS's, but just the four coders'
recent performance: choose the coder that had the lowest entropy on the
last N pixels. (some decaying record).
instead of LOE, blend them based on confidence
(this is unusually easy because of the fact that
the alphabet is binary)
something like P_tot = W_tot * Sum P[n] / w[n]
where w is the weight = actual recent coded len
(TMW uses 2^(-w) instead of 1/w )
(that may actually be better cuz we can do it with shifts;
you need some subtlety : find the smallest weight and factor it out first)
* we're very similar to ECECOW, but getting stomped.
he beats us by almost 1.0 PSNR at the same bitrate
---
e512 lossless, l6
lena : 4.141 (ececow : 4.06)
barb : 4.468 (ececow : 4.34)
*****/
#include <stdio.h>
#include <stdlib.h>
#include <crblib/inc.h>
#include <crblib/arithc.h>
#include <crblib/intmath.h>
#include "coder.h"
#include "subbands.h"
extern int tune_param;
#define VAL_CONTEXTS 20
#define VAL_CONTEXT_MAX (VAL_CONTEXTS -1)
#define SHAPE_BASE VAL_CONTEXTS
#define SHAPE(x) (SHAPE_BASE<<(x))
#ifdef BIG_SHAPE_CNTX
#define NUM_SHAPES 5
#else
#define NUM_SHAPES 2
#endif
#define NUM_CONTEXTS (VAL_CONTEXTS<<NUM_SHAPES)
#ifdef BIG_SIGN_CONTEXT
#define SIGN_CONTEXTS 729 // 3^6
#else
#define SIGN_CONTEXTS 81 // 3^4
#endif // BIG_SIGN_CONTEXT
#define TOTMAX 4000
#define INC 30
#define P0_INIT 8
#define P1_INIT 0
#define bitModel(bit,P0,PT) do { PT += INC; if (!(bit)) P0 += INC; if ( PT > TOTMAX ) { PT >>= 1; P0 >>= 1; P0++; PT += 2; } } while(0)
#define bitEnc(bit,ari,P0,PT) do { arithEncBit(ari,P0,PT,bit); bitModel(bit,P0,PT); } while(0)
#define bitDec(bit,ari,P0,PT) do { bit = arithDecBit(ari,P0,PT); bitModel(bit,P0,PT); } while(0)
#define AddSignContext(context,val,mask) do { context *= 3; if( abs(val)&(mask) ) { if ( (val) > 0 ) context ++; else context += 2; } } while(0)
#ifdef LOG
int nbest1=0,nbest2=0,nbest3=0,nbest4=0;
#endif
typedef struct {
int p0,pt;
} binContext;
void coderBPbin_encodeSubbandBP(coder *me,subband_leaf *sb,int);
void coderBPbin_decodeSubbandBP(coder *me,subband_leaf *sb,int);
typedef struct {
binContext signs[SIGN_CONTEXTS];
binContext stats1[NUM_CONTEXTS],
stats2[NUM_CONTEXTS],
stats3[NUM_CONTEXTS],
stats4[NUM_CONTEXTS];
} myInfo;
void coderBPbin_init(coder *c)
{
myInfo *d;
int i;
if ( (d = new(myInfo)) == NULL )
errexit("ozero init failed");
c->data = d;
for(i=0;i<NUM_CONTEXTS;i++) {
d->stats1[i].p0 = P0_INIT+1; d->stats1[i].pt = 2+P0_INIT+P1_INIT;
d->stats2[i].p0 = P0_INIT+1; d->stats2[i].pt = 2+P0_INIT+P1_INIT;
d->stats3[i].p0 = P0_INIT+1; d->stats3[i].pt = 2+P0_INIT+P1_INIT;
d->stats4[i].p0 = P0_INIT+1; d->stats4[i].pt = 2+P0_INIT+P1_INIT;
}
for(i=0;i<SIGN_CONTEXTS;i++) {
d->signs[i].p0 = 1;
d->signs[i].pt = 2;
}
}
void coderBPbin_free(coder *c)
{
if ( c->data ) {
myInfo *d;
d = c->data;
free(d);
c->data = NULL;
}
}
coder coderBPbin = {
"BitPlane Binary",
coderBPbin_init,
coderBPbin_free,
NULL,NULL,NULL,NULL,NULL,NULL,
coderBPbin_encodeSubbandBP,
coderBPbin_decodeSubbandBP
};
/**********
lazy way to pass the state from getStats to fixStats
and also interacts with the codeBand()
these are re-initialized at each codeBand() call, so this is
quite re-entrant as long as we aren't multi-threaded
(that is, no more than one call to codeBand() at a time)
*********/
static int VD;
static binContext *stats1,*stats2,*stats3,*stats4;
static binContext *s1,*s2,*s3,*s4;
static int len1,len2,len3,len4;
static int *sister_x,*sister_y,sister_trans,*parent,parent_step,parent_mask,parent_shift;
static int p0,pt,donemask,nextmask;
int intentropy(int p0,int pt)
{
return ((p0*(log2x16(pt) - log2x16(p0)) + (pt-p0)*(log2x16(pt) - log2x16(pt-p0)))<<3)/pt;
}
int LOEweight(int p0,int pt)
{
if ( (pt - p0) < p0 ) p0 = (pt - p0);
return log2x16(pt) - log2x16(p0);
}
static void getStats(int *dp,int *pp,int x,int y,int width,int height,int fullw)
{
int shapes;
int P,N,S,E,W,NE,NW,X1,X2,X3,X4;
int diff,lena,lenb;
binContext *sa,*sb;
/*** elaborate context-making ***/
VD = abs(*dp)&donemask; // current val already done
P = abs(*pp)&nextmask;
if ( y == 0 ) {
N = NW = NE = VD;
if ( x == 0 ) W = VD; else W = abs(dp[-1]) & nextmask;
} else if ( x == 0 ) {
W = NW = 0;
N = abs(dp[-fullw]) & nextmask;
NE = abs(dp[1-fullw]) & nextmask;
} else {
N = abs(dp[-fullw]) & nextmask;
W = abs(dp[-1]) & nextmask;
NW = abs(dp[-1-fullw]) & nextmask;
if ( x == (width-1) ) NE = VD;
else NE = abs(dp[1-fullw]) & nextmask;
}
if ( y < (height-1) ) S = abs(dp[fullw]) & donemask; else S = VD;
if ( x < (width-1) ) E = abs(dp[1]) & donemask; else E = VD;
if ( sister_x ) {
X1 = S; X2 = E;
switch(sister_trans) {
case 0:
X3 = abs( sister_x[ x + fullw*y ] ) & nextmask;
X4 = abs( sister_y[ x + fullw*y ] ) & nextmask;
break;
case 1:
X3 = abs( sister_x[ y + fullw*x ] ) & nextmask;
X4 = abs( sister_y[ x + fullw*y ] ) & nextmask;
break;
case 2:
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -