?? cryptomanager.cpp
字號:
/*
* Copyright (C) 2001-2003 Jacek Sieka, j_s@telia.com
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include "stdinc.h"
#include "DCPlusPlus.h"
#include "BitInputStream.h"
#include "BitOutputStream.h"
#include "File.h"
#include "CryptoManager.h"
#include "../bzip2/bzlib.h"
CryptoManager* Singleton<CryptoManager>::instance;
ZCompressor::ZCompressor(File& file, int64_t aMaxBytes /* = -1 */, int aStrength /* = Z_DEFAULT_COMPRESSION */) throw(CryptoException) :
state(STATE_RUNNING), inbuf(NULL), inbufLen(0), f(file), maxBytes(aMaxBytes), level(aStrength) {
memset(&zs, 0, sizeof(zs));
if(deflateInit(&zs, level) != Z_OK) {
throw CryptoException(STRING(COMPRESSION_ERROR));
}
}
u_int32_t ZCompressor::compress(void* buf, u_int32_t bufLen, u_int32_t& bytesRead) throw(CryptoException) {
dcassert(buf);
dcassert(bufLen > 0);
if(state == STATE_FINISHED) {
return 0;
}
// We make a read buffer four times as large as the out buffer...this should be
// enough so that we don't need to read multiple times...
if(inbuf == NULL) {
inbufLen = bufLen << 2;
inbuf = new u_int8_t[inbufLen];
}
zs.avail_out = bufLen;
zs.next_out = (u_int8_t*) buf;
bytesRead = 0;
// Check if we're compressing at all...if not; set level to 0 to just compute
// the adler32...we want at least 5% compression, a completely arbitrary value.
// The 64kb probe zone is also taken out of the air...
if( (level != 0) && (zs.total_out > 64*1024) && (zs.total_out > ((u_int32_t)((float)zs.total_in*0.95))) ) {
dcdebug("Disabling compression for 0x%x (%d/%d = %.02f)\n", this, zs.total_out, zs.total_in, ((float)zs.total_out / (float)zs.total_in));
setStrength(0);
if(zs.avail_out == 0)
return bufLen;
}
while(true) {
if( (zs.avail_in == 0) && (state == STATE_RUNNING) ) {
u_int32_t bytes = (maxBytes == -1) ? inbufLen : (u_int32_t) min((int64_t) inbufLen, maxBytes);
if(bytes == 0) {
// Alright, that's it folks...
state = STATE_FINISHING;;
} else {
u_int32_t readBytes = f.read(inbuf, bytes);
bytesRead += readBytes;
if(readBytes == 0) {
if(maxBytes != -1 && maxBytes != 0) {
// This is an error, we didn't read as many bytes as requested
throw CryptoException(STRING(COMPRESSION_ERROR));
}
// Read all we can...
state = STATE_FINISHING;;
} else {
if(maxBytes != -1) {
maxBytes -= readBytes;
}
zs.avail_in = readBytes;
zs.next_in = (u_int8_t*)inbuf;
}
}
}
if(state == STATE_RUNNING) {
int err = ::deflate(&zs, Z_NO_FLUSH);
if(err != Z_OK) {
dcdebug("ZCompressor::compress Error %d while running\n", err);
throw CryptoException(STRING(COMPRESSION_ERROR));
}
if(zs.avail_out == 0) {
return bufLen;
}
} else {
dcassert(state == STATE_FINISHING);
int err = ::deflate(&zs, Z_FINISH);
if(err == Z_OK) {
// More bytes?
return bufLen - zs.avail_out;
} else if(err == Z_STREAM_END) {
// Good, we're finished...
state = STATE_FINISHED;
return bufLen - zs.avail_out;
} else {
dcdebug("ZCompressor::compress Error %d while finishing\n", err);
throw CryptoException(STRING(COMPRESSION_ERROR));
}
}
}
}
void ZCompressor::setStrength(int str) throw(CryptoException) {
if(level != str) {
u_int32_t x = zs.avail_in;
zs.avail_in = 0;
int err = ::deflateParams(&zs, str, Z_DEFAULT_STRATEGY);
zs.avail_in = x;
dcassert(err != Z_BUF_ERROR);
if(err != Z_OK) {
throw CryptoException(STRING(COMPRESSION_ERROR));
}
level = str;
}
}
ZDecompressor::ZDecompressor() throw(CryptoException) {
memset(&zs, 0, sizeof(zs));
if(inflateInit(&zs) != Z_OK)
throw(CryptoException(STRING(DECOMPRESSION_ERROR)));
outbufSize = 64*1024;
outbuf = new u_int8_t[outbufSize];
}
u_int32_t ZDecompressor::decompress(const void* inbuf, int& inbytes) throw(CryptoException) {
zs.avail_in = inbytes;
zs.avail_out = outbufSize;
zs.next_in = (u_int8_t*)const_cast<void*>(inbuf);
zs.next_out = (u_int8_t*)outbuf;
int err = inflate(&zs, Z_NO_FLUSH);
if(err == Z_OK || err == Z_STREAM_END) {
inbytes = zs.avail_in;
return outbufSize - zs.avail_out;
} else {
dcdebug("BZ2Decompressor::compress Error %d while decompressing\n", err);
throw CryptoException(STRING(DECOMPRESSION_ERROR));
}
}
void CryptoManager::decodeBZ2(const u_int8_t* is, size_t sz, string& os) throw (CryptoException) {
bz_stream bs;
memset(&bs, 0, sizeof(bs));
if(BZ2_bzDecompressInit(&bs, 0, 0) != BZ_OK)
throw(CryptoException(STRING(DECOMPRESSION_ERROR)));
// We assume that the files aren't compressed more than 4:1...if they are it'll work anyway,
// but we'll have to do multiple passes...
int bufsize = 4*sz;
AutoArray<char> buf(bufsize);
bs.avail_in = sz;
bs.avail_out = bufsize;
bs.next_in = (char*)(const_cast<u_int8_t*>(is));
bs.next_out = buf;
int err;
os.clear();
while((err = BZ2_bzDecompress(&bs)) == BZ_OK) {
if (bs.avail_in == 0 && bs.avail_out > 0) { // error: BZ_UNEXPECTED_EOF
BZ2_bzDecompressEnd(&bs);
throw CryptoException(STRING(DECOMPRESSION_ERROR));
}
os.append(buf, bufsize-bs.avail_out);
bs.avail_out = bufsize;
bs.next_out = buf;
}
if(err == BZ_STREAM_END)
os.append(buf, bufsize-bs.avail_out);
BZ2_bzDecompressEnd(&bs);
if(err < 0) {
// This was a real error
throw CryptoException(STRING(DECOMPRESSION_ERROR));
}
}
void CryptoManager::encodeBZ2(const string& is, string& os, int strength /* = 9 */) {
bz_stream bs;
memset(&bs, 0, sizeof(bs));
if(BZ2_bzCompressInit(&bs, strength, 0, 30) != BZ_OK) {
return;
}
// This size guarantees that the compressed data will fit (according to the bzip docs)
int bufsize = (int)((double)is.size() * 1.01) + 600;
AutoArray<char> buf(bufsize);
bs.next_in = const_cast<char*>(is.data());
bs.avail_in = is.size();
bs.next_out = buf;
bs.avail_out = bufsize;
int err = BZ2_bzCompress ( &bs, BZ_FINISH );
dcassert(err != BZ_FINISH);
if(err == BZ_STREAM_END) {
os = string(buf, bufsize-bs.avail_out);
}
BZ2_bzCompressEnd(&bs);
}
string CryptoManager::keySubst(const u_int8_t* aKey, int len, int n) {
u_int8_t* temp = new u_int8_t[len + n * 10];
int j=0;
for(int i = 0; i<len; i++) {
if(isExtra(aKey[i])) {
temp[j++] = '/'; temp[j++] = '%'; temp[j++] = 'D';
temp[j++] = 'C'; temp[j++] = 'N';
switch(aKey[i]) {
case 0: temp[j++] = '0'; temp[j++] = '0'; temp[j++] = '0'; break;
case 5: temp[j++] = '0'; temp[j++] = '0'; temp[j++] = '5'; break;
case 36: temp[j++] = '0'; temp[j++] = '3'; temp[j++] = '6'; break;
case 96: temp[j++] = '0'; temp[j++] = '9'; temp[j++] = '6'; break;
case 124: temp[j++] = '1'; temp[j++] = '2'; temp[j++] = '4'; break;
case 126: temp[j++] = '1'; temp[j++] = '2'; temp[j++] = '6'; break;
}
temp[j++] = '%'; temp[j++] = '/';
} else {
temp[j++] = aKey[i];
}
}
string tmp((char*)temp, j);
delete[] temp;
return tmp;
}
string CryptoManager::makeKey(const string& aLock) {
if(aLock.size() < 3)
return Util::emptyString;
u_int8_t* temp = new u_int8_t[aLock.length()];
u_int8_t v1;
int extra=0;
v1 = (u_int8_t)(aLock[0]^5);
v1 = (u_int8_t)(((v1 >> 4) | (v1 << 4)) & 0xff);
temp[0] = v1;
string::size_type i;
for(i = 1; i<aLock.length(); i++) {
v1 = (u_int8_t)(aLock[i]^aLock[i-1]);
v1 = (u_int8_t)(((v1 >> 4) | (v1 << 4))&0xff);
temp[i] = v1;
if(isExtra(temp[i]))
extra++;
}
temp[0] = (u_int8_t)(temp[0] ^ temp[aLock.length()-1]);
if(isExtra(temp[0])) {
extra++;
}
string tmp = keySubst(temp, aLock.length(), extra);
delete[] temp;
return tmp;
}
void CryptoManager::decodeHuffman(const u_int8_t* is, string& os) throw(CryptoException) {
// BitInputStream bis;
int pos = 0;
if(is[pos] != 'H' || is[pos+1] != 'E' || !((is[pos+2] == '3') || (is[pos+2] == '0'))) {
throw CryptoException(STRING(DECOMPRESSION_ERROR));
}
pos+=5;
int size;
size = *(int*)&is[pos];
pos+=4;
dcdebug("Size: %d\n", size);
short treeSize;
treeSize = *(short*)&is[pos];
pos+=2;
Leaf** leaves = new Leaf*[treeSize];
int i;
for(i=0; i<treeSize; i++) {
int chr = is[pos++];
int bits = is[pos++];
leaves[i] = new Leaf(chr, bits);
}
BitInputStream bis(is, pos);
DecNode* root = new DecNode();
for(i=0; i<treeSize; i++) {
DecNode* node = root;
for(int j=0; j<leaves[i]->len; j++) {
if(bis.get()) {
if(node->right == NULL)
node->right = new DecNode();
node = node->right;
} else {
if(node->left == NULL)
node->left = new DecNode();
node = node->left;
}
}
node->chr = leaves[i]->chr;
}
bis.skipToByte();
// We know the size, so no need to use strange STL stuff...
AutoArray<char> buf(size+1);
pos = 0;
for(i=0; i<size; i++) {
DecNode* node = root;
while(node->chr == -1) {
if(bis.get()) {
node = node->right;
} else {
node = node->left;
}
if(node == NULL) {
for(i=0; i<treeSize; i++) {
delete leaves[i];
}
delete[] leaves;
delete root;
dcdebug("Bad node found!!!\n");
throw CryptoException(STRING(DECOMPRESSION_ERROR));
}
}
buf[pos++] = (u_int8_t)node->chr;
}
buf[pos] = 0;
os.assign(buf, size);
for(i=0; i<treeSize; i++) {
delete leaves[i];
}
delete[] leaves;
delete root;
}
/**
* Counts the occurances of each characters, and adds the total number of
* different characters to the end of the array.
*/
int CryptoManager::countChars(const string& aString, int* c, u_int8_t& csum) {
int chars = 0;
const u_int8_t* a = (const u_int8_t*)aString.data();
string::size_type len = aString.length();
for(string::size_type i=0; i<len; i++) {
if(c[a[i]] == 0)
chars++;
c[a[i]]++;
csum^=a[i];
}
return chars;
}
void CryptoManager::walkTree(list<Node*>& aTree) {
while(aTree.size() > 1) {
// Merge the first two nodes
Node* node = new Node(aTree.front(), *(++aTree.begin()));
aTree.pop_front();
aTree.pop_front();
bool done = false;
for(list<Node*>::iterator i=aTree.begin(); i != aTree.end(); ++i) {
if(*node <= *(*i)) {
aTree.insert(i, node);
done = true;
break;
}
}
if(!done)
aTree.push_back(node);
}
}
/**
* @todo Make more effective in terms of memory allocations and copies...
*/
void CryptoManager::recurseLookup(vector<u_int8_t>* table, Node* node, vector<u_int8_t>& u_int8_ts) {
if(node->chr != -1) {
table[node->chr] = u_int8_ts;
return;
}
vector<u_int8_t> left = u_int8_ts;
vector<u_int8_t> right = u_int8_ts;
left.push_back(0);
right.push_back(1);
recurseLookup(table, node->left, left);
recurseLookup(table, node->right, right);
}
/**
* Builds a table over the characters available (for fast lookup).
* Stores each character as a set of u_int8_ts with values {0, 1}.
*/
void CryptoManager::buildLookup(vector<u_int8_t>* table, Node* aRoot) {
vector<u_int8_t> left;
vector<u_int8_t> right;
left.push_back(0);
right.push_back(1);
recurseLookup(table, aRoot->left, left);
recurseLookup(table, aRoot->right, right);
}
class greaterNode {
public:
bool operator() (Node*& a, Node*& b) const {
return *a < *b;
};
};
/**
* Encodes a set of data with DC's version of huffman encoding..
* @todo Use real streams maybe? or something else than string (operator[] contains a compare, slow...)
*/
void CryptoManager::encodeHuffman(const string& is, string& os) {
// We might as well expect this much data as huffman encoding doesn't go very far...
os.reserve(is.size());
if(is.length() == 0) {
os.append("HE3\x0d");
// Nada...
os.append(7, 0);
return;
}
// First, we count all characters
u_int8_t csum = 0;
int count[256];
memset(count, 0, sizeof(count));
int chars = countChars(is, count, csum);
// Next, we create a set of nodes and add it to a list, removing all characters that never occur.
list<Node*> nodes;
int i;
for(i=0; i<256; i++) {
if(count[i] > 0) {
nodes.push_back(new Node(i, count[i]));
}
}
nodes.sort(greaterNode());
dcdebug("\n");
#ifdef _DEBUG
for(list<Node*>::iterator it = nodes.begin(); it != nodes.end(); ++it) dcdebug("%.02x:%d, ", (*it)->chr, (*it)->weight);
#endif
walkTree(nodes);
dcassert(nodes.size() == 1);
Node* root = nodes.front();
vector<u_int8_t> lookup[256];
// Build a lookup table for fast character lookups
buildLookup(lookup, root);
delete root;
// Reserve some memory to avoid all those copies when appending...
os.reserve(is.size() * 3 / 4);
os.append("HE3\x0d");
// Checksum
os.append(1, csum);
string::size_type sz = is.size();
os.append((char*)&sz, 4);
// Character count
os.append((char*)&chars, 2);
// The characters and their bitlengths
for(i=0; i<256; i++) {
if(count[i] > 0) {
os.append(1, (u_int8_t)i);
os.append(1, (u_int8_t)lookup[i].size());
}
}
BitOutputStream bos(os);
// The tree itself, ie the bits of each character
for(i=0; i<256; i++) {
if(count[i] > 0) {
bos.put(lookup[i]);
}
}
dcdebug("\nu_int8_ts: %d", os.size());
bos.skipToByte();
for(string::size_type j=0; j<is.size(); j++) {
dcassert(lookup[(u_int8_t)is[j]].size() != 0);
bos.put(lookup[(u_int8_t)is[j]]);
}
bos.skipToByte();
}
/**
* @file
* $Id: CryptoManager.cpp,v 1.32 2003/05/13 11:34:07 arnetheduck Exp $
*/
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -