亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? mtl.h

?? Matrix_Template_Library.rar c++矩陣模塊庫函數
?? H
?? 第 1 頁 / 共 5 頁
字號:
    for (Int j = 0; j < B.ncols(); ++j) {      A_ki = (*A_k).begin();      A_kiend = (*A_k).end();      Int k = A_ki.column();      Int i = A_ki.row();      if (A.is_lower()) { /* handle the diagonal elements */        C(i,j) += *A_ki * B(k,j);        ++A_ki;      } else        --A_kiend;      while (not_at(A_ki, A_kiend)) {        k = A_ki.column();        i = A_ki.row();        C(i,j) += *A_ki * B(k,j);        C(k,j) += *A_ki * B(i,j);        ++A_ki;      }      k = A_ki.column();      i = A_ki.row();      if (A.is_upper())        C(i,j) += *A_ki * B(k,j);    }    ++A_k;  }}//: Specialization for triangular matrices//!noindex:template <class MatA, class MatB, class MatC>inline voidmatmat_mult(const MatA& A, const MatB& B, MatC& C, symmetric_tag){  typedef typename matrix_traits<MatA>::orientation Orien;  symm_simple_mult(A, B, C, Orien());}//: Specialization for triangular matrices//!noindextemplate <class MatA, class MatB, class MatC>inline voidmatmat_mult(const MatA& A, const MatB& B, MatC& C, triangle_tag){  typedef typename matrix_traits<MatA>::size_type Int;  typedef typename matrix_traits<MatA>::orientation Orien;  if (A.is_unit()) {    Int M = MTL_MIN(A.nrows(), A.ncols());    Int N = B.ncols();    for (Int i = 0; i < M; ++i)      for (Int j = 0; j < N; ++j)        C(i,j) += B(i,j);  }  simple_mult(A, B, C, mtl::dense_tag(), Orien());}//: Dispatch to row/column general and banded matrices//!noindex:template <class MatA, class MatB, class MatC>inline voidmatmat_mult(const MatA& A, const MatB& B, MatC& C, rectangle_tag){  typedef typename matrix_traits<MatA>::sparsity Sparsity;  typedef typename matrix_traits<MatA>::orientation Orien;  simple_mult(A, B, C, Sparsity(), Orien());}template <class MatA, class MatB, class MatC>inline voidmatmat_mult(const MatA& A, const MatB& B, MatC& C, banded_tag){  typedef typename matrix_traits<MatC>::sparsity Sparsity;  typedef typename matrix_traits<MatA>::orientation Orien;  simple_mult(A, B, C, Sparsity(), Orien());}//: Matrix multiplication  C <- C + A * B////  The actual specialization of the algorithm used depends of the//  types of matrices used. If all the matrices are dense and//  rectangular the blocked algorithm is used (when --with-blais is//  specified in the configure). Otherwise the traversal depends on//  matrix A. Therefore if one is multiplying a sparse matrix by a//  dense, one would want the sparse matrix as the A//  argument. Typically, for performance reasons, one would not want//  to use a sparse matrix for C.//  <p>//  Note: ignore the <tt>twod_tag</tt> argument and the underscores in//  the name of this function.////!precond: <tt>A.nrows() == C.nrows()</tt>//!precond: <tt>A.ncols() == B.nrows()</tt>//!precond: <tt>B.ncols() == C.ncols()</tt>//!category: algorithms//!component: function//!definition: mtl.h//!typereqs: the value types for each of the matrices must be compatible//!typereqs: the multiplication operator must be defined for <tt>MatA::value_type</tt>//!typereqs: the addition operator must be defined for <tt>MatA::value_type</tt>template <class MatA, class MatB, class MatC>inline voidmult_dim__(const MatA& A, const MatB& B, MatC& C, twod_tag){  typedef typename MatA::shape Shape;  matmat_mult(A, B, C, Shape());}//: Dispatch between matrix matrix and matrix vector mult.//!noindex:template <class LinalgA, class LinalgB, class LinalgC>inline voidmult(const LinalgA& A, const LinalgB& B, MTL_OUT(LinalgC) C_){  LinalgC& C = const_cast<LinalgC&>(C_);  typedef typename linalg_traits<LinalgB>::dimension Dim;  mult_dim__(A, B, C, Dim());}//: for column oriented//!noindex:template <class TriMatrix, class VecX>inline voidtri_solve__(const TriMatrix& T, VecX& x, column_tag){  typedef typename matrix_traits<TriMatrix>::size_type Int;  typedef typename matrix_traits<TriMatrix>::value_type VT;  typename VecX::value_type x_j;   if (T.is_upper()) {    typename TriMatrix::const_reverse_iterator T_j;     typename TriMatrix::Column::const_reverse_iterator T_ji, T_jrend;    for (T_j = T.rbegin(); T_j != T.rend(); ++T_j) {      T_ji = (*T_j).rbegin();      T_jrend = (*T_j).rend();      //Int j = T_ji.column();      Int j = T_j.index();            //Paul C. Leopardi <leopardi@bigpond.net.au> reported the fix       //for for a sparse matrix to have a completely empty row (or column)      if ( (T_ji != T_jrend) && ! T.is_unit()) {        x[j] /= *T_ji; /* the diagonal */        ++T_ji;      }      x_j = x[j];      while (T_ji != T_jrend) {        Int i = T_ji.row();        x[i] -= x_j * *T_ji;        ++T_ji;      }    }  } else {                      /* T is lower */    typename TriMatrix::const_iterator T_j;     typename TriMatrix::Column::const_iterator T_ji, T_jend;    for (T_j = T.begin(); T_j != T.end(); ++T_j) {      T_ji = (*T_j).begin();      T_jend = (*T_j).end();      //Int j = T_ji.column(); //T_ji could be T_jend      Int j = T_j.index();            if ( (T_ji != T_jend) && ! T.is_unit()) {        x[j] /= *T_ji; /* the diagonal */        ++T_ji;      }      x_j = x[j];            while (T_ji != T_jend) {        Int i = T_ji.row();        x[i] -= x_j * *T_ji;        ++T_ji;      }    }  }    }//: for row major//!noindex:template <class TriMatrix, class VecX>inline voidtri_solve__(const TriMatrix& T, VecX& x, row_tag){  typedef typename matrix_traits<TriMatrix>::value_type VT;  typedef typename matrix_traits<TriMatrix>::size_type Int;  if (T.is_upper()) {    typename TriMatrix::const_reverse_iterator T_i, T_iend;     typename TriMatrix::Row::const_reverse_iterator T_ij;    T_i = T.rbegin();    T_iend = T.rend();    if ( (T_i != T_iend) && ! T.is_unit()) {      T_ij = (*T_i).rbegin();      x[T_ij.row()] /= *T_ij;      ++T_i;    }    while (T_i != T_iend) {      T_ij = (*T_i).rbegin();      //Int i = T_ij.row();      Int i = T_i.index();      VT t = x[i];      typename TriMatrix::Row::const_reverse_iterator T_iend;      T_iend = (*T_i).rend();      if ( (T_ij != T_iend) && ! T.is_unit())        --T_iend;      Int j;      while (T_ij != T_iend) {        j = T_ij.column();        t -= (*T_ij) * x[j];              ++T_ij;      }      if ( (*T_i).rbegin() != (*T_i).rend() && !T.is_unit()) //T_i is not empty        t /= *T_ij;              x[i] = t;      ++T_i;    }  } else { /* T is lower */    typename TriMatrix::const_iterator T_i;     typename TriMatrix::Row::const_iterator T_ij;    T_i = T.begin();    if (T_i != T.end() && ! T.is_unit()) {      T_ij = (*T_i).begin();      x[T_ij.row()] *= VT(1) / *T_ij;      ++T_i;    }    while (T_i != T.end()) {      T_ij = (*T_i).begin();      //Int i = T_ij.row(); //T_ij could be bad      Int i = T_i.index();      VT t = x[i];      typename TriMatrix::Row::const_iterator T_iend;      T_iend = (*T_i).end();      if ( ( T_ij != T_iend ) &&  ! T.is_unit())        --T_iend;      Int j;      while (T_ij != T_iend) {        j = T_ij.column();        t -= (*T_ij) * x[j];        ++T_ij;      }      if ( (*T_i).begin() !=(*T_i).end() &&  !T.is_unit())        t /= *T_ij;      x[i] = t;      ++T_i;    }  }}//: Triangular Solve:  <tt>x <- T^{-1} * x</tt>//  Use with trianguler matrixes only ie. use the <TT>triangle</TT>//  adaptor class.////  To use with a sparse matrix, the sparse matrix must be wrapped with//  a triangle adaptor. You must specify "packed" in the triangle//  adaptor. The sparse matrix must only have elements in the correct//  side.////!category: algorithms//!component: function//!definition: mtl.h//!example: tri_solve.cc//!typereqs: <tt>Matrix::value_type</tt> and <tt>VecX::value_type</tt> must be the same type//!typereqs: the multiplication operator must be defined for <tt>Matrix::value_type</tt>//!typereqs: the division operator must be defined for <tt>Matrix::value_type</tt>//!typereqs: the addition operator must be defined for <tt>Matrix::value_type</tt>template <class TriMatrix, class VecX>inline voidtri_solve(const TriMatrix& T, MTL_OUT(VecX) x_) MTL_THROW_ASSERTION{  VecX& x = const_cast<VecX&>(x_);  MTL_ASSERT(T.nrows() <= x.size(), "mtl::tri_solve()");  MTL_ASSERT(T.ncols() <= x.size(), "mtl::tri_solve()");  MTL_ASSERT(T.ncols() == T.nrows(), "mtl::tri_solve()");  typedef typename TriMatrix::orientation orien;  tri_solve__(T, x, orien());}//: tri solve for left side//!noindex:template <class MatT, class MatB>inline voidtri_solve__(const MatT& T, MatB& B, left_side){  /*  const int M = B.nrows(); */  const int N = B.ncols();  /* unoptimized version */  for (int j = 0; j < B.ncols(); ++j)    mtl::tri_solve(T, columns(B)[j]);  /* JGS need to do an optimized version of this  if (T.is_upper()) {    for (int k = M-1; k > 0; --k) {      if (B(k,j) != 0) {        if (! T.is_unit())          B(k,j) /= T(k,k);        for (int i = 0; i < k; ++i)          B(i,j) -= B(k,j) * T(i,k);      }    }  } else {    for (int j = 0; j < N; ++j)      for (int k = 0; k < M; ++k) {        if (B(k,j) != 0) {          if (! T.is_unit())            B(k,j) /= T(k,k);          for (int i = k; i < M; ++i)            B(i,j) -= B(k,j) * T(i,k);        }      }  }  */}/* JGS untested!!! *///: tri solve for right side//!noindex:template <class MatT, class MatB>inline voidtri_solve__(const MatT& T, MatB& B, right_side){  const int M = B.nrows();  const int N = B.ncols();  typedef typename MatT::PR PR;  if (T.is_upper()) {    for (int j = 0; j < N; ++j) {      for (int k = 0; k < j; ++k)        if (T(k,j) != PR(0))          for (int i = 0; i < M; ++i)            B(i,j) -=  T(k,j) * B(i,k);      if (! T.is_unit()) {        PR tmp = PR(1) / T(j,j);        for (int i = 1; i < M; ++i)          B(i,j) = tmp * B(i,j);      }    }  } else { // T is lower    for (int j = N - 1; j > 0; --j) {      for (int k = j; k < N; ++k)        if (T(k,j) != PR(0))          for (int i = 0; i < M; ++i)            B(i,j) -=  T(k,j) * B(i,k);      if (! T.is_unit()) {        PR tmp = PR(1) / T(j,j);        for (int i = 1; i < M; ++i)          B(i,j) = tmp * B(i,j);      }    }  }}//: Triangular Solve: <tt>B <- A^{-1} * B  or  B <- B * A^{-1}</tt>////  This solves the equation <tt>T*X = B</tt> or <tt>X*T = B</tt> where T//  is an upper or lower triangular matrix, and B is a general//  matrix. The resulting matrix X is written onto matrix B. The first//  equation is solved if <tt>left_side</tt> is specified. The second//  equation is solved if <tt>right_side</tt> is specified.////  Currently only works with dense storage format.////!category: algorithms//!component: function//!definition: mtl.h//!complexity: O(n^3)//!example: matmat_trisolve.cc//!typereqs: <tt>MatT::value_type</tt> and <tt>MatB::value_type</tt> must be the same type//!typereqs: the multiplication operator must be defined for <tt>MatT::value_type</tt>//!typereqs: the division operator must be defined for <tt>MatT::value_type</tt>//!typereqs: the addition operator must be defined for <tt>MatT::value_type</tt>template <class MatT, class MatB, class Side>inline voidtri_solve(const MatT& T, MTL_OUT(MatB) B, Side s){  tri_solve__(T, const_cast<MatB&>(B), s);}//: Rank One Update:   <tt>A <- A  +  x * y^T</tt>//// Also known as the outer product of two vectors.// <codeblock>//       y = [ 1  2  3 ]////     [ 1 ] [ 1  2  3 ]// x = [ 2 ] [ 2  4  6 ] => A//     [ 3 ] [ 3  6  9 ]//     [ 4 ] [ 4  8 12 ]// </codeblock>// <p>// When using this algorithm with a symmetric matrix, x and y// must be the same vector, or at least have the same values.// Otherwise the resulting matrix is not symmetric.////!precond:  <TT>A.nrows() <= x.size()</TT>//!precond:  <TT>A.ncols() <= y.size()</TT>//!precond: A has rectangle shape and is dense//!category: algorithms//!component: function//!definition: mtl.h//!example: rank_one.cc//!typereqs: <tt>Matrix::value_type</tt>, <tt>VecX::value_type</tt>, and <tt>VecY::value_type</tt> must be the same type//!typereqs: the multiplication operator must be defined for <tt>Matrix::value_type</tt>//!typereqs: the addition operator must be defined for <tt>Matrix::value_type</tt>template <class Matrix, class VecX, class VecY>inline voidrank_one_update(MTL_OUT(Matrix) A_, 		const VecX& x, const VecY& y) MTL_THROW_ASSERTION{  Matrix& A = const_cast<Matrix&>(A_);  MTL_ASSERT(A.nrows() <= x.size(), "mtl::rank_one_update()");  MTL_ASSERT(A.ncols() <= y.size(), "mtl::rank_one_update()");  typename Matrix::iterator i;  typename Matrix::OneD::iterator j, jend;  for (i = A.begin(); i != A.end(); ++i) {    j = (*i).begin(); jend = (*i).end();    for (; j != jend; ++j)      *j += x[j.row()] * MTL_CONJ(y[j.column()]);  }}/* 1. how will the scaling by alpha work into this * 2. is my placement of conj() ok with respect *    to both row and column oriented matrices * 3. Perhaps split this in two, have diff version for complex *///: Rank Two Update:  <tt>A <- A  +  x * y^T  +  y * x^T</tt>//////!category: algorithms//!component: function//!precond:   <TT>A.nrows() == A.ncols()</TT>//!precond:   <TT>A.nrows() == x.size()</TT>//!precond:   <TT>x.size() == y.size()</TT>//!precond: A has rectangle shape and is dense.//!definition: mtl.h//!example: rank_2_symm_sparse.cc//!typereqs: <tt>Matrix::value_type</tt>, <tt>VecX::value_type</tt>, and <tt>VecY::value_type</tt> must be the same type.//!typereqs: The multiplication operator must be defined for <tt>Matrix::value_type</tt>.//!typereqs: The addition operator must be defined for <tt>Matrix::value_type</tt>.template <class Matrix, class VecX, class VecY>inline voidrank_two_update(MTL_OUT(Matrix) A_,		const VecX& x, const VecY& y) MTL_THROW_AS

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产精品免费免费| 国产最新精品免费| 亚洲天堂久久久久久久| 成人午夜电影网站| 亚洲乱码中文字幕| 日韩精品中文字幕在线一区| 日韩黄色免费电影| 欧美成人福利视频| 国产激情视频一区二区三区欧美| 亚洲一区在线观看网站| 国产精品久久久久久福利一牛影视| 久久久精品免费观看| 欧美国产综合一区二区| 亚洲色图欧美在线| 国产欧美综合在线| 国产丝袜欧美中文另类| 国产网站一区二区三区| 亚洲码国产岛国毛片在线| 91网站最新地址| 婷婷久久综合九色综合伊人色| 天天综合网 天天综合色| 日韩免费观看2025年上映的电影| 国产精品影视在线| 一区二区三区毛片| 精品国产91九色蝌蚪| 成人av在线电影| 日韩影院精彩在线| 中文字幕乱码亚洲精品一区| 色久优优欧美色久优优| 久久黄色级2电影| 亚洲天天做日日做天天谢日日欢 | 国产传媒欧美日韩成人| 日韩一区在线免费观看| 欧美一区二区在线免费播放| www.66久久| 日韩精品久久理论片| 欧美高清一级片在线观看| 欧美高清www午色夜在线视频| 国产.欧美.日韩| 日韩中文字幕不卡| 亚洲欧美日韩系列| 国产色婷婷亚洲99精品小说| 在线观看网站黄不卡| 国产老肥熟一区二区三区| 亚洲国产精品人人做人人爽| 欧美高清在线视频| 欧美电影精品一区二区| 欧美日韩一区视频| 99免费精品在线| 国产一区在线精品| 日本在线不卡视频一二三区| 国产精品高潮久久久久无| 精品国产伦一区二区三区免费| 一本久久a久久精品亚洲| 国产乱子伦视频一区二区三区| 亚洲成人高清在线| 一区二区激情小说| 亚洲人精品午夜| 国产精品久线在线观看| 日本一区免费视频| 久久影院电视剧免费观看| 欧美一级国产精品| 欧美videos中文字幕| 国产一区二区三区高清播放| 精品国产伦理网| 国产一区二区三区四区五区入口| 欧美激情一区二区三区全黄 | 亚洲欧美激情视频在线观看一区二区三区| 美国十次综合导航| 国产精品女人毛片| 99精品热视频| 久久99精品视频| 亚洲美女屁股眼交| 欧美xxxx老人做受| 在线免费观看成人短视频| 美国三级日本三级久久99| 日韩三级免费观看| 欧美日本在线一区| 国产精品77777竹菊影视小说| 午夜伊人狠狠久久| 亚洲欧洲精品一区二区三区不卡| 91色在线porny| 亚洲美女偷拍久久| 久久久影视传媒| 欧美国产成人精品| 久久99精品国产麻豆婷婷洗澡| 蜜桃av一区二区三区电影| 欧美精品亚洲一区二区在线播放| 欧美精品亚洲二区| 欧美电视剧在线观看完整版| 欧美精品一区二区蜜臀亚洲| 日本一二三不卡| 亚洲欧洲三级电影| 午夜精彩视频在线观看不卡| 久久精品国产色蜜蜜麻豆| 美女诱惑一区二区| 婷婷综合另类小说色区| 国产精品欧美极品| 国产精品久久久久久久久动漫| 91精品国模一区二区三区| 欧洲日韩一区二区三区| 91免费国产在线| 91精品国产综合久久福利| 色香蕉久久蜜桃| 欧美亚洲动漫制服丝袜| 91丝袜美女网| 欧美美女黄视频| 日韩女同互慰一区二区| 亚洲精品在线免费观看视频| 亚洲精品一区二区三区99| 欧美精品一区二区三区在线 | 91免费看视频| 成人av在线电影| 欧美日韩视频在线一区二区| 欧美日韩高清一区二区不卡| 欧美一区二区三区啪啪| 精品国产一区二区三区不卡 | 色欧美乱欧美15图片| 91丨九色丨黑人外教| 69av一区二区三区| 午夜不卡av免费| av一区二区三区四区| 欧美日韩一区二区不卡| 91同城在线观看| 欧美日韩精品二区第二页| 国产欧美一区视频| 国产99久久久国产精品潘金| 亚洲第一二三四区| 亚洲地区一二三色| 欧美日韩精品一区视频| 久久久精品tv| 日韩av不卡一区二区| 成人免费黄色大片| 欧美变态tickle挠乳网站| 亚洲另类中文字| 成人一级视频在线观看| 91精品国产综合久久精品麻豆| 国产精品的网站| 中文字幕av一区二区三区| 激情综合网最新| 欧美日韩另类国产亚洲欧美一级| 国产精品福利一区| 国产不卡在线视频| 在线亚洲高清视频| 国产日韩欧美精品电影三级在线| 国产传媒日韩欧美成人| 91精品国产综合久久精品app| 亚洲国产精品欧美一二99| jvid福利写真一区二区三区| 久久影院电视剧免费观看| 日本vs亚洲vs韩国一区三区二区| 色综合天天综合给合国产| 国产精品久久久久桃色tv| 成人成人成人在线视频| 久久精品这里都是精品| 成人综合在线观看| 中文幕一区二区三区久久蜜桃| 国产一区二区三区精品欧美日韩一区二区三区 | 成人涩涩免费视频| 中文字幕一区二区三区色视频| av激情综合网| 午夜精品福利一区二区蜜股av| 欧美色综合天天久久综合精品| 亚洲视频综合在线| 欧美美女网站色| 欧美日韩中文国产| 麻豆免费精品视频| 男人的j进女人的j一区| 日韩一区在线看| 精品久久久久久亚洲综合网| 免费一级片91| 日韩伦理电影网| 欧美一级爆毛片| 欧美日韩视频在线一区二区| ww久久中文字幕| 强制捆绑调教一区二区| 成人av午夜电影| 欧美日韩另类国产亚洲欧美一级| 亚洲成人av一区二区| 欧美日韩精品一区二区三区四区| 亚洲一区二区三区不卡国产欧美| 在线观看91精品国产入口| 性久久久久久久| 欧美大片免费久久精品三p| 国产一区二区主播在线| 中文字幕乱码亚洲精品一区| 91视频观看免费| 欧美日韩在线三级| 91在线免费播放| 粗大黑人巨茎大战欧美成人| 日本网站在线观看一区二区三区| 欧美激情一区二区三区蜜桃视频| 91香蕉视频污在线| 国产成人亚洲综合a∨婷婷| 精品无码三级在线观看视频 | 久久久综合精品| 精品黑人一区二区三区久久| 欧美日韩一区二区三区高清 | 国产一区二区三区免费看| 一区二区三区四区在线播放|