?? index.html
字號:
<LI><A href="oned_tag.html">oned_tag</A>Identifies linear algebra objects as 1D (<A HREF="Vector.html" >Vector</A>) <LI><A href="rectangle_tag.html">rectangle_tag</A>Identifies rectangular matrices <LI><A href="row_matrix_traits.html">row_matrix_traits</A>Row <A HREF="Matrix.html" >Matrix</A> Traits <LI><A href="row_tag.html">row_tag</A>Identifies a row-major <A HREF="Matrix.html" >Matrix</A> <LI><A href="sparse_tag.html">sparse_tag</A>Identifies a sparse <A HREF="Matrix.html" >Matrix</A> or <A HREF="Vector.html" >Vector</A> <LI><A href="strideable.html">strideable</A>Identifies matrices that can be used with the rows and columns functions <LI><A href="symmetric_tag.html">symmetric_tag</A>Identifies <A HREF="symmetric.html" >symmetric</A> matrices <LI><A href="triangle_tag.html">triangle_tag</A>Identifies triangular matrices <LI><A href="twod_tag.html">twod_tag</A>Identifies linear algebra objects as 2D (<A HREF="Matrix.html" >Matrix</A>) </OL> </OL><A NAME="iterators"></A><FONT FACE=arial,helvetica SIZE=+1><B>2. Iterators</B></FONT> <OL><!-- JGS Fill in later <LI><A href="Iterators.html"><FONT FACE=arial,helvetica SIZE=+1><B>Introduction</A></B></FONT>--><A NAME="iterator-concepts"></A> <LI><FONT FACE=arial,helvetica SIZE=+1><B>Concepts</B></FONT> <OL> <LI><A href="IndexedIterator.html">IndexedIterator</A><A HREF="IndexedIterator.html" >IndexedIterator</A> </OL><A NAME="iterator-functions"></A> <LI><FONT FACE=arial,helvetica SIZE=+1><B>Iterator functions</B></FONT> <OL> <LI><A href="trans_iterIteratorUnaryFunction.html">trans_iter</A> Helper function for creating a transforming iterator </OL><A NAME="iterator-classes"></A> <LI><FONT FACE=arial,helvetica SIZE=+1><B>Iterator classes</B></FONT> <OL> <LI><A href="compressed_iter.html">compressed_iter</A>Compressed Storage Iterator </OL><A NAME="iterator-adaptors"></A> <LI><FONT FACE=arial,helvetica SIZE=+1><B>Iterator adaptors</B></FONT> <OL> <LI><A href="dense_iterator.html">dense_iterator</A><A HREF="dense.html" >dense</A> iterator <LI><A href="scale_iterator.html">scale_iterator</A>scale iterator <LI><A href="sparse_iterator.html">sparse_iterator</A>Sparse <A HREF="Vector.html" >Vector</A> Iterator <LI><A href="strided_iterator.html">strided_iterator</A>strided iterator <LI><A href="transform_iterator.html">transform_iterator</A>Tranforming Iterator </OL> </OL><A NAME="algorithms"></A><FONT FACE=arial,helvetica SIZE=+1><B>3. Algorithms</B></FONT><!-- <OL> <LI><FONT FACE=arial,helvetica SIZE=+1><B>Linear Space Algorithms</B></FONT> <LI><FONT FACE=arial,helvetica SIZE=+1><B>Linear Algebra Algorithms</B></FONT> <LI><FONT FACE=arial,helvetica SIZE=+1><B>Banach Space Algorithms</B></FONT> <LI><FONT FACE=arial,helvetica SIZE=+1><B>Hilbert Space Algorithms</B></FONT> <LI><FONT FACE=arial,helvetica SIZE=+1><B>Data Manipulation Algorithms</B></FONT> <LI><FONT FACE=arial,helvetica SIZE=+1><B>All of 'em</B></FONT>--> <OL> <LI><A href="sumconstVector.html">sum</A> Sum: <tt>s <- sum_i(x(i))</tt> <LI><A href="scaleLinalgObjconstT.html">scale</A> Scale: <tt>A <- alpha*A or x <- alpha x</tt> <LI><A href="set_diagonalMatrixconstT.html">set_diagonal</A> Set Diagonal: <tt>A(i,i) <- alpha</tt> <LI><A href="two_normconstVector.html">two_norm</A> Two Norm: <tt>s <- sqrt(sum_i(|x(i)^2|))</tt> <LI><A href="sum_squaresconstVector.html">sum_squares</A> Sum of the Squares <LI><A href="one_normconstLinalgObj.html">one_norm</A> One Norm: <tt>s <- sum(|x_i|) or s <- max_i(sum_j(|A(i,j)|))</tt> <LI><A href="infinity_normconstLinalgObj.html">infinity_norm</A> Infinity Norm: <tt>s <- max_j(sum_i(|A(i,j)|)) or s <- max_i(|x(i)|)</tt> <LI><A href="max_indexconstVec.html">max_index</A> Max Index: <tt>i <- index of max(|x(i)|)</tt> <LI><A href="max_abs_indexconstVec.html">max_abs_index</A> Maximum Absolute Index: <tt>i <- index of max(|x(i)|)</tt> <LI><A href="min_indexconstVec.html">min_index</A> Minimum Index: <tt>i <- index of min(x(i))</tt> <LI><A href="min_abs_indexconstVec.html">min_abs_index</A> Minimum Absolute Index: <tt>i <- index of min(|x(i)|)</tt> <LI><A href="maxconstVec.html">max</A> Max Value: <tt>s <- max(x(i))</tt> <LI><A href="minconstVec.html">min</A> Min Value: <tt>s <- min(x_i)</tt> <LI><A href="transposeMatrix.html">transpose</A> Transpose in Place: <tt>A <- A^T</tt> <LI><A href="transposeconstMatAMatB.html">transpose</A> Transpose: <tt>B <- A^T</tt> <LI><A href="multconstMatrixconstVecXconstVecYVecZ.html">mult</A> Multiplication: <tt>z <- A x + y</tt> <LI><A href="__mult_dimconstMatrixconstVecXVecYoned_tag.html">__mult_dim</A> <A HREF="Matrix.html" >Matrix</A> <A HREF="Vector.html" >Vector</A> Multiplication: <tt>y <- A x</tt> <LI><A href="__mult_dimconstMatAconstMatBMatCtwod_tag.html">__mult_dim</A> <A HREF="Matrix.html" >Matrix</A> multiplication C <- C + A * B <LI><A href="tri_solveconstTriMatrixVecX.html">tri_solve</A> Triangular Solve: <tt>x <- T^{-1} * x</tt> <LI><A href="tri_solveconstMatTMatBSide.html">tri_solve</A> Triangular Solve: <tt>B <- A^{-1} * B or B <- B * A^{-1}</tt> <LI><A href="rank_one_updateMatrixconstVecXconstVecY.html">rank_one_update</A> Rank One Update: <tt>A <- A + x * y^T</tt> <LI><A href="rank_two_updateMatrixconstVecXconstVecY.html">rank_two_update</A> Rank Two Update: <tt>A <- A + x * y^T + y * x^T</tt> <LI><A href="scatterconstVecXVecY.html">scatter</A> Scatter <tt>y <- x</tt> <LI><A href="gatherconstVecXVecY.html">gather</A> Gather <tt>y <- x</tt> <LI><A href="copyconstLinalgALinalgB.html">copy</A> Copy: <tt>B <- A or y <- x</tt> <LI><A href="addconstVecXconstVecYVecZ.html">add</A> Add: <tt>z <- x + y</tt> <LI><A href="addconstVecXconstVecYconstVecZVecW.html">add</A> Add: <tt>w <- x + y + z</tt> <LI><A href="addconstLinalgALinalgB.html">add</A> Add: <tt>B <- A + B or y <- x + y</tt> <LI><A href="ele_multconstVecXconstVecYVecZ.html">ele_mult</A> Element-wise Multiplication: <tt>z <- x O* y</tt> <LI><A href="ele_multconstMatAMatB.html">ele_mult</A> Element-wise Multiply: <tt>B <- A O* B</tt> <LI><A href="ele_divconstVecXconstVecYVecZ.html">ele_div</A> Element-wise Division: <tt>z <- x O/ y</tt> <LI><A href="swapLinalgALinalgB.html">swap</A> Swap: <tt>B <-> A or y <-> x</tt> <LI><A href="dotconstVecXconstVecYT.html">dot</A> Dot Product: <tt>s <- x . y + s</tt> <LI><A href="dotconstVecXconstVecY.html">dot</A> Dot Product: <tt>s <- x . y</tt> <LI><A href="dotconstVecXconstVecYdouble_double.html">dot</A> Dot Product (extended precision): <tt>s <- x . y + s</tt> <LI><A href="dot_conjconstVecXconstVecYT.html">dot_conj</A> Dot Conjugate: <tt>s <- x . conj(y) + s</tt> <LI><A href="dot_conjconstVecXconstVecY.html">dot_conj</A> Dot Conjugate: <tt>s <- x . conj(y)</tt> <LI><A href="lu_factorDenseMatrixPvector.html">lu_factor</A> LU Factorization of a general (<A HREF="dense.html" >dense</A>) <A HREF="matrix.html" >matrix</A> <LI><A href="lu_solveconstDenseMatrixconstPvectorconstVectorBVectorX.html">lu_solve</A> LU Solve <LI><A href="lu_inverseconstDenseMatrixLUconstPvectorDenseMatrix.html">lu_inverse</A> LU Inverse </OL><!-- </OL> --><A NAME="function-objects"></A><FONT FACE=arial,helvetica SIZE=+1><B>4. Function Objects</B></FONT> <OL> <LI><A href="givens_rotation.html">givens_rotation</A>Givens Plane Rotation <LI><A href="givens_rotation__2.html">givens_rotation__2</A>The specialization for complex numbers. <LI><A href="givens_rotation__3.html">givens_rotation__3</A>The specialization for complex numbers. <LI><A href="givens_rotation__4.html">givens_rotation__4</A>The specialization for complex numbers. <LI><A href="modified_givens.html">modified_givens</A>Modified Givens Transformation </OL><!-- <OL> <LI><FONT FACE=arial,helvetica SIZE=+1><B>Function object adaptors</B></FONT> <LI><FONT FACE=arial,helvetica SIZE=+1><B>Member function adaptors</B></FONT> </OL>--><!--INTERVAL--><A NAME="interval"></A><FONT FACE=arial,helvetica SIZE=+1><B>5. Interval Class</B></FONT><OL> <LI><FONT FACE=arial,helvetica SIZE=+1><B>Interval Object</B></FONT> <OL>
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -