?? e_acoshf.s
字號(hào):
.file "acoshf.s"// Copyright (c) 2000 - 2003, Intel Corporation// All rights reserved.//// Contributed 2000 by the Intel Numerics Group, Intel Corporation//// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are// met://// * Redistributions of source code must retain the above copyright// notice, this list of conditions and the following disclaimer.//// * Redistributions in binary form must reproduce the above copyright// notice, this list of conditions and the following disclaimer in the// documentation and/or other materials provided with the distribution.//// * The name of Intel Corporation may not be used to endorse or promote// products derived from this software without specific prior written// permission.// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.//// Intel Corporation is the author of this code, and requests that all// problem reports or change requests be submitted to it directly at// http://www.intel.com/software/products/opensource/libraries/num.htm.//// ==============================================================// History// ==============================================================// 03/28/01 Initial version// 04/19/01 Improved speed of the paths #1,2,3,4,5// 05/20/02 Cleaned up namespace and sf0 syntax// 02/06/03 Reordered header: .section, .global, .proc, .align// 05/14/03 Improved performance, set denormal flag for unorms >= 1.0//// API// ==============================================================// float acoshf(float)//// Overview of operation// ==============================================================//// There are 7 paths:// 1. x = 1.0// Return acoshf(x) = 0.0// 2. 1.0 < x < 1.000499725341796875(0x3FF0020C00000000)// Return acoshf(x) = sqrt(x-1) * Pol4(x),// where Pol4(x) = (x*C2 + C1)*(x-1) + C0//// 3. 1.000499725341796875(0x3FF0020C00000000) <= x < 2^51// Return acoshf(x) = log(x + sqrt(x^2 -1.0))// To compute x + sqrt(x^2 -1.0) modified Newton Raphson method is used// (2 iterations)// Algorithm description for log function see below.//// 4. 2^51 <= x < +INF// Return acoshf(x) = log(2*x)// Algorithm description for log function see below.//// 5. x = +INF// Return acoshf(x) = +INF//// 6. x = [S,Q]NaN// Return acoshf(x) = QNaN//// 7. x < 1.0// It's domain error. Error handler with tag = 137 is called////==============================================================// Algorithm Description for log(x) function// Below we are using the fact that inequality x - 1.0 > 2^(-6) is always// true for this acosh implementation//// Consider x = 2^N 1.f1 f2 f3 f4...f63// Log(x) = log(frcpa(x) x/frcpa(x))// = log(1/frcpa(x)) + log(frcpa(x) x)// = -log(frcpa(x)) + log(frcpa(x) x)//// frcpa(x) = 2^-N frcpa((1.f1 f2 ... f63)//// -log(frcpa(x)) = -log(C)// = -log(2^-N) - log(frcpa(1.f1 f2 ... f63))//// -log(frcpa(x)) = -log(C)// = +Nlog2 - log(frcpa(1.f1 f2 ... f63))//// -log(frcpa(x)) = -log(C)// = +Nlog2 + log(frcpa(1.f1 f2 ... f63))//// Log(x) = log(1/frcpa(x)) + log(frcpa(x) x)//// Log(x) = +Nlog2 + log(1./frcpa(1.f1 f2 ... f63)) + log(frcpa(x) x)// Log(x) = +Nlog2 - log(/frcpa(1.f1 f2 ... f63)) + log(frcpa(x) x)// Log(x) = +Nlog2 + T + log(frcpa(x) x)//// Log(x) = +Nlog2 + T + log(C x)//// Cx = 1 + r//// Log(x) = +Nlog2 + T + log(1+r)// Log(x) = +Nlog2 + T + Series( r - r^2/2 + r^3/3 - r^4/4 ....)//// 1.f1 f2 ... f8 has 256 entries.// They are 1 + k/2^8, k = 0 ... 255// These 256 values are the table entries.//// Implementation//==============================================================// C = frcpa(x)// r = C * x - 1//// Form rseries = r + P1*r^2 + P2*r^3 + P3*r^4//// x = f * 2*n where f is 1.f_1f_2f_3....f_63// Nfloat = float(n) where n is the true unbiased exponent// pre-index = f_1f_2....f_8// index = pre_index * 8// get the dxt table entry at index + offset = T//// result = (T + Nfloat * log(2)) + rseries//// The T table is calculated as follows// Form x_k = 1 + k/2^8 where k goes from 0... 255// y_k = frcpa(x_k)// log(1/y_k) in quad and round to double//// Registers used//==============================================================// Floating Point registers used:// f8, input// f9 -> f15, f32 -> f62//// General registers used:// r14 -> r27, r32 -> r39//// Predicate registers used:// p6 -> p15//// p6 to filter out case when x = [Q,S]NaN// p7,p8 to filter out case when x < 1.0//// p10 to select path #1// p11 to filter out case when x = +INF// p12 used in the frcpa// p13 to select path #4// p14,p15 to select path #2// Assembly macros//==============================================================log_GR_exp_17_ones = r14log_GR_signexp_f8 = r15log_table_address2 = r16log_GR_exp_16_ones = r17log_GR_exp_f8 = r18log_GR_true_exp_f8 = r19log_GR_significand_f8 = r20log_GR_index = r21log_GR_comp2 = r22acosh_GR_f8 = r23log_GR_comp = r24acosh_GR_f8_sig = r25log_table_address3 = r26NR_table_address = r27GR_SAVE_B0 = r33GR_SAVE_GP = r34GR_SAVE_PFS = r35GR_Parameter_X = r36GR_Parameter_Y = r37GR_Parameter_RESULT = r38acosh_GR_tag = r39//==============================================================log_y = f9NR1 = f10NR2 = f11log_y_rs = f12log_y_rs_iter = f13log_y_rs_iter1 = f14log_NORM_f8 = f15log_w = f32acosh_comp = f34acosh_comp2 = f33log_P3 = f35log_P2 = f36log_P1 = f37log2 = f38log_C0 = f39log_C1 = f40log_C2 = f41acosh_w_rs = f42log_C = f43log_arg = f44acosh_w_iter1 = f45acosh_w_iter2 = f46log_int_Nfloat = f47log_r = f48log_rsq = f49log_rp_p4 = f50log_rp_p32 = f51log_rcube = f52log_rp_p10 = f53log_rp_p2 = f54log_Nfloat = f55log_T = f56log_r2P_r = f57log_T_plus_Nlog2 = f58acosh_w_sqrt = f59acosh_w_1 = f60log_arg_early = f61log_y_rs_iter2 = f62// Data tables//==============================================================RODATA.align 16LOCAL_OBJECT_START(log_table_1)data8 0xbfd0001008f39d59 // p3data8 0x3fd5556073e0c45a // p2data8 0xbfdffffffffaea15 // p1data8 0x3FE62E42FEFA39EF // log2LOCAL_OBJECT_END(log_table_1)LOCAL_OBJECT_START(log_table_2)data8 0x3FE0000000000000 // 0.5data8 0x4008000000000000 // 3.0data8 0xD92CBAD213719F11, 0x00003FF9 // C2 3FF9D92CBAD213719F11data8 0x93D38EBF2EC9B073, 0x0000BFFC // C1 BFFC93D38EBF2EC9B073data8 0xB504F333F9DA0E32, 0x00003FFF // C0 3FFFB504F333F9DA0E32LOCAL_OBJECT_END(log_table_2)LOCAL_OBJECT_START(log_table_3)data8 0x3F60040155D5889E //log(1/frcpa(1+ 0/256)data8 0x3F78121214586B54 //log(1/frcpa(1+ 1/256)data8 0x3F841929F96832F0 //log(1/frcpa(1+ 2/256)data8 0x3F8C317384C75F06 //log(1/frcpa(1+ 3/256)data8 0x3F91A6B91AC73386 //log(1/frcpa(1+ 4/256)data8 0x3F95BA9A5D9AC039 //log(1/frcpa(1+ 5/256)data8 0x3F99D2A8074325F4 //log(1/frcpa(1+ 6/256)data8 0x3F9D6B2725979802 //log(1/frcpa(1+ 7/256)data8 0x3FA0C58FA19DFAAA //log(1/frcpa(1+ 8/256)data8 0x3FA2954C78CBCE1B //log(1/frcpa(1+ 9/256)data8 0x3FA4A94D2DA96C56 //log(1/frcpa(1+ 10/256)data8 0x3FA67C94F2D4BB58 //log(1/frcpa(1+ 11/256)data8 0x3FA85188B630F068 //log(1/frcpa(1+ 12/256)data8 0x3FAA6B8ABE73AF4C //log(1/frcpa(1+ 13/256)data8 0x3FAC441E06F72A9E //log(1/frcpa(1+ 14/256)data8 0x3FAE1E6713606D07 //log(1/frcpa(1+ 15/256)data8 0x3FAFFA6911AB9301 //log(1/frcpa(1+ 16/256)data8 0x3FB0EC139C5DA601 //log(1/frcpa(1+ 17/256)data8 0x3FB1DBD2643D190B //log(1/frcpa(1+ 18/256)data8 0x3FB2CC7284FE5F1C //log(1/frcpa(1+ 19/256)data8 0x3FB3BDF5A7D1EE64 //log(1/frcpa(1+ 20/256)data8 0x3FB4B05D7AA012E0 //log(1/frcpa(1+ 21/256)data8 0x3FB580DB7CEB5702 //log(1/frcpa(1+ 22/256)data8 0x3FB674F089365A7A //log(1/frcpa(1+ 23/256)data8 0x3FB769EF2C6B568D //log(1/frcpa(1+ 24/256)data8 0x3FB85FD927506A48 //log(1/frcpa(1+ 25/256)data8 0x3FB9335E5D594989 //log(1/frcpa(1+ 26/256)data8 0x3FBA2B0220C8E5F5 //log(1/frcpa(1+ 27/256)data8 0x3FBB0004AC1A86AC //log(1/frcpa(1+ 28/256)data8 0x3FBBF968769FCA11 //log(1/frcpa(1+ 29/256)data8 0x3FBCCFEDBFEE13A8 //log(1/frcpa(1+ 30/256)data8 0x3FBDA727638446A2 //log(1/frcpa(1+ 31/256)data8 0x3FBEA3257FE10F7A //log(1/frcpa(1+ 32/256)data8 0x3FBF7BE9FEDBFDE6 //log(1/frcpa(1+ 33/256)data8 0x3FC02AB352FF25F4 //log(1/frcpa(1+ 34/256)data8 0x3FC097CE579D204D //log(1/frcpa(1+ 35/256)data8 0x3FC1178E8227E47C //log(1/frcpa(1+ 36/256)data8 0x3FC185747DBECF34 //log(1/frcpa(1+ 37/256)data8 0x3FC1F3B925F25D41 //log(1/frcpa(1+ 38/256)data8 0x3FC2625D1E6DDF57 //log(1/frcpa(1+ 39/256)data8 0x3FC2D1610C86813A //log(1/frcpa(1+ 40/256)data8 0x3FC340C59741142E //log(1/frcpa(1+ 41/256)data8 0x3FC3B08B6757F2A9 //log(1/frcpa(1+ 42/256)data8 0x3FC40DFB08378003 //log(1/frcpa(1+ 43/256)data8 0x3FC47E74E8CA5F7C //log(1/frcpa(1+ 44/256)data8 0x3FC4EF51F6466DE4 //log(1/frcpa(1+ 45/256)data8 0x3FC56092E02BA516 //log(1/frcpa(1+ 46/256)data8 0x3FC5D23857CD74D5 //log(1/frcpa(1+ 47/256)data8 0x3FC6313A37335D76 //log(1/frcpa(1+ 48/256)data8 0x3FC6A399DABBD383 //log(1/frcpa(1+ 49/256)data8 0x3FC70337DD3CE41B //log(1/frcpa(1+ 50/256)data8 0x3FC77654128F6127 //log(1/frcpa(1+ 51/256)data8 0x3FC7E9D82A0B022D //log(1/frcpa(1+ 52/256)data8 0x3FC84A6B759F512F //log(1/frcpa(1+ 53/256)data8 0x3FC8AB47D5F5A310 //log(1/frcpa(1+ 54/256)data8 0x3FC91FE49096581B //log(1/frcpa(1+ 55/256)data8 0x3FC981634011AA75 //log(1/frcpa(1+ 56/256)data8 0x3FC9F6C407089664 //log(1/frcpa(1+ 57/256)data8 0x3FCA58E729348F43 //log(1/frcpa(1+ 58/256)data8 0x3FCABB55C31693AD //log(1/frcpa(1+ 59/256)data8 0x3FCB1E104919EFD0 //log(1/frcpa(1+ 60/256)data8 0x3FCB94EE93E367CB //log(1/frcpa(1+ 61/256)data8 0x3FCBF851C067555F //log(1/frcpa(1+ 62/256)data8 0x3FCC5C0254BF23A6 //log(1/frcpa(1+ 63/256)data8 0x3FCCC000C9DB3C52 //log(1/frcpa(1+ 64/256)data8 0x3FCD244D99C85674 //log(1/frcpa(1+ 65/256)data8 0x3FCD88E93FB2F450 //log(1/frcpa(1+ 66/256)data8 0x3FCDEDD437EAEF01 //log(1/frcpa(1+ 67/256)data8 0x3FCE530EFFE71012 //log(1/frcpa(1+ 68/256)data8 0x3FCEB89A1648B971 //log(1/frcpa(1+ 69/256)data8 0x3FCF1E75FADF9BDE //log(1/frcpa(1+ 70/256)data8 0x3FCF84A32EAD7C35 //log(1/frcpa(1+ 71/256)data8 0x3FCFEB2233EA07CD //log(1/frcpa(1+ 72/256)data8 0x3FD028F9C7035C1C //log(1/frcpa(1+ 73/256)data8 0x3FD05C8BE0D9635A //log(1/frcpa(1+ 74/256)data8 0x3FD085EB8F8AE797 //log(1/frcpa(1+ 75/256)data8 0x3FD0B9C8E32D1911 //log(1/frcpa(1+ 76/256)data8 0x3FD0EDD060B78081 //log(1/frcpa(1+ 77/256)data8 0x3FD122024CF0063F //log(1/frcpa(1+ 78/256)data8 0x3FD14BE2927AECD4 //log(1/frcpa(1+ 79/256)data8 0x3FD180618EF18ADF //log(1/frcpa(1+ 80/256)data8 0x3FD1B50BBE2FC63B //log(1/frcpa(1+ 81/256)data8 0x3FD1DF4CC7CF242D //log(1/frcpa(1+ 82/256)data8 0x3FD214456D0EB8D4 //log(1/frcpa(1+ 83/256)data8 0x3FD23EC5991EBA49 //log(1/frcpa(1+ 84/256)data8 0x3FD2740D9F870AFB //log(1/frcpa(1+ 85/256)data8 0x3FD29ECDABCDFA04 //log(1/frcpa(1+ 86/256)data8 0x3FD2D46602ADCCEE //log(1/frcpa(1+ 87/256)data8 0x3FD2FF66B04EA9D4 //log(1/frcpa(1+ 88/256)data8 0x3FD335504B355A37 //log(1/frcpa(1+ 89/256)data8 0x3FD360925EC44F5D //log(1/frcpa(1+ 90/256)data8 0x3FD38BF1C3337E75 //log(1/frcpa(1+ 91/256)data8 0x3FD3C25277333184 //log(1/frcpa(1+ 92/256)
?? 快捷鍵說(shuō)明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -