亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? s_cosf.s

?? glibc 庫, 不僅可以學習使用庫函數,還可以學習函數的具體實現,是提高功力的好資料
?? S
?? 第 1 頁 / 共 2 頁
字號:
.file "sincosf.s"// Copyright (c) 2000 - 2005, Intel Corporation// All rights reserved.//// Contributed 2000 by the Intel Numerics Group, Intel Corporation//// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are// met://// * Redistributions of source code must retain the above copyright// notice, this list of conditions and the following disclaimer.//// * Redistributions in binary form must reproduce the above copyright// notice, this list of conditions and the following disclaimer in the// documentation and/or other materials provided with the distribution.//// * The name of Intel Corporation may not be used to endorse or promote// products derived from this software without specific prior written// permission.// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.//// Intel Corporation is the author of this code, and requests that all// problem reports or change requests be submitted to it directly at// http://www.intel.com/software/products/opensource/libraries/num.htm.//// History//==============================================================// 02/02/00 Initial version// 04/02/00 Unwind support added.// 06/16/00 Updated tables to enforce symmetry// 08/31/00 Saved 2 cycles in main path, and 9 in other paths.// 09/20/00 The updated tables regressed to an old version, so reinstated them// 10/18/00 Changed one table entry to ensure symmetry// 01/03/01 Improved speed, fixed flag settings for small arguments.// 02/18/02 Large arguments processing routine excluded// 05/20/02 Cleaned up namespace and sf0 syntax// 06/03/02 Insure inexact flag set for large arg result// 09/05/02 Single precision version is made using double precision one as base// 02/10/03 Reordered header: .section, .global, .proc, .align// 03/31/05 Reformatted delimiters between data tables//// API//==============================================================// float sinf( float x);// float cosf( float x);//// Overview of operation//==============================================================//// Step 1// ======// Reduce x to region -1/2*pi/2^k ===== 0 ===== +1/2*pi/2^k  where k=4//    divide x by pi/2^k.//    Multiply by 2^k/pi.//    nfloat = Round result to integer (round-to-nearest)//// r = x -  nfloat * pi/2^k//    Do this as (x -  nfloat * HIGH(pi/2^k)) - nfloat * LOW(pi/2^k) //    for increased accuracy.//    pi/2^k is stored as two numbers that when added make pi/2^k.//       pi/2^k = HIGH(pi/2^k) + LOW(pi/2^k)//    HIGH part is rounded to zero, LOW - to nearest//// x = (nfloat * pi/2^k) + r//    r is small enough that we can use a polynomial approximation//    and is referred to as the reduced argument.//// Step 3// ======// Take the unreduced part and remove the multiples of 2pi.// So nfloat = nfloat (with lower k+1 bits cleared) + lower k+1 bits////    nfloat (with lower k+1 bits cleared) is a multiple of 2^(k+1)//    N * 2^(k+1)//    nfloat * pi/2^k = N * 2^(k+1) * pi/2^k + (lower k+1 bits) * pi/2^k//    nfloat * pi/2^k = N * 2 * pi + (lower k+1 bits) * pi/2^k//    nfloat * pi/2^k = N2pi + M * pi/2^k////// Sin(x) = Sin((nfloat * pi/2^k) + r)//        = Sin(nfloat * pi/2^k) * Cos(r) + Cos(nfloat * pi/2^k) * Sin(r)////          Sin(nfloat * pi/2^k) = Sin(N2pi + Mpi/2^k)//                               = Sin(N2pi)Cos(Mpi/2^k) + Cos(N2pi)Sin(Mpi/2^k)//                               = Sin(Mpi/2^k)////          Cos(nfloat * pi/2^k) = Cos(N2pi + Mpi/2^k)//                               = Cos(N2pi)Cos(Mpi/2^k) + Sin(N2pi)Sin(Mpi/2^k)//                               = Cos(Mpi/2^k)//// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)////// Step 4// ======// 0 <= M < 2^(k+1)// There are 2^(k+1) Sin entries in a table.// There are 2^(k+1) Cos entries in a table.//// Get Sin(Mpi/2^k) and Cos(Mpi/2^k) by table lookup.////// Step 5// ======// Calculate Cos(r) and Sin(r) by polynomial approximation.//// Cos(r) = 1 + r^2 q1  + r^4 q2  = Series for Cos// Sin(r) = r + r^3 p1  + r^5 p2  = Series for Sin//// and the coefficients q1, q2 and p1, p2 are stored in a table////// Calculate// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)//// as follows////    S[m] = Sin(Mpi/2^k) and C[m] = Cos(Mpi/2^k)//    rsq = r*r//////    P = P1 + r^2*P2//    Q = Q1 + r^2*Q2////       rcub = r * rsq//       Sin(r) = r + rcub * P//              = r + r^3p1  + r^5p2 = Sin(r)////            The coefficients are not exactly these values, but almost.////            p1 = -1/6  = -1/3!//            p2 = 1/120 =  1/5!//            p3 = -1/5040 = -1/7!//            p4 = 1/362889 = 1/9!////       P =  r + r^3 * P////    Answer = S[m] Cos(r) + C[m] P////       Cos(r) = 1 + rsq Q//       Cos(r) = 1 + r^2 Q//       Cos(r) = 1 + r^2 (q1 + r^2q2)//       Cos(r) = 1 + r^2q1 + r^4q2////       S[m] Cos(r) = S[m](1 + rsq Q)//       S[m] Cos(r) = S[m] + S[m] rsq Q//       S[m] Cos(r) = S[m] + s_rsq Q//       Q         = S[m] + s_rsq Q//// Then,////    Answer = Q + C[m] P// Registers used//==============================================================// general input registers:// r14 -> r19// r32 -> r45// predicate registers used:// p6 -> p14// floating-point registers used// f9 -> f15// f32 -> f61// Assembly macros//==============================================================sincosf_NORM_f8                 = f9sincosf_W                       = f10sincosf_int_Nfloat              = f11sincosf_Nfloat                  = f12sincosf_r                       = f13sincosf_rsq                     = f14sincosf_rcub                    = f15sincosf_save_tmp                = f15sincosf_Inv_Pi_by_16            = f32sincosf_Pi_by_16_1              = f33sincosf_Pi_by_16_2              = f34sincosf_Inv_Pi_by_64            = f35sincosf_Pi_by_16_3              = f36sincosf_r_exact                 = f37sincosf_Sm                      = f38sincosf_Cm                      = f39sincosf_P1                      = f40sincosf_Q1                      = f41sincosf_P2                      = f42sincosf_Q2                      = f43sincosf_P3                      = f44sincosf_Q3                      = f45sincosf_P4                      = f46sincosf_Q4                      = f47sincosf_P_temp1                 = f48sincosf_P_temp2                 = f49sincosf_Q_temp1                 = f50sincosf_Q_temp2                 = f51sincosf_P                       = f52sincosf_Q                       = f53sincosf_srsq                    = f54sincosf_SIG_INV_PI_BY_16_2TO61  = f55sincosf_RSHF_2TO61              = f56sincosf_RSHF                    = f57sincosf_2TOM61                  = f58sincosf_NFLOAT                  = f59sincosf_W_2TO61_RSH             = f60fp_tmp                          = f61/////////////////////////////////////////////////////////////sincosf_AD_1                    = r33sincosf_AD_2                    = r34sincosf_exp_limit               = r35sincosf_r_signexp               = r36sincosf_AD_beta_table           = r37sincosf_r_sincos                = r38sincosf_r_exp                   = r39sincosf_r_17_ones               = r40sincosf_GR_sig_inv_pi_by_16     = r14sincosf_GR_rshf_2to61           = r15sincosf_GR_rshf                 = r16sincosf_GR_exp_2tom61           = r17sincosf_GR_n                    = r18sincosf_GR_m                    = r19sincosf_GR_32m                  = r19sincosf_GR_all_ones             = r19gr_tmp                          = r41GR_SAVE_PFS                     = r41GR_SAVE_B0                      = r42GR_SAVE_GP                      = r43RODATA.align 16// Pi/16 partsLOCAL_OBJECT_START(double_sincosf_pi)   data8 0xC90FDAA22168C234, 0x00003FFC // pi/16 1st part   data8 0xC4C6628B80DC1CD1, 0x00003FBC // pi/16 2nd partLOCAL_OBJECT_END(double_sincosf_pi)// Coefficients for polynomialsLOCAL_OBJECT_START(double_sincosf_pq_k4)   data8 0x3F810FABB668E9A2 // P2   data8 0x3FA552E3D6DE75C9 // Q2   data8 0xBFC555554447BC7F // P1   data8 0xBFDFFFFFC447610A // Q1LOCAL_OBJECT_END(double_sincosf_pq_k4)// Sincos table (S[m], C[m])LOCAL_OBJECT_START(double_sin_cos_beta_k4)    data8 0x0000000000000000 // sin ( 0 Pi / 16 )    data8 0x3FF0000000000000 // cos ( 0 Pi / 16 )//    data8 0x3FC8F8B83C69A60B // sin ( 1 Pi / 16 )    data8 0x3FEF6297CFF75CB0 // cos ( 1 Pi / 16 )//    data8 0x3FD87DE2A6AEA963 // sin ( 2 Pi / 16 )    data8 0x3FED906BCF328D46 // cos ( 2 Pi / 16 )//    data8 0x3FE1C73B39AE68C8 // sin ( 3 Pi / 16 )    data8 0x3FEA9B66290EA1A3 // cos ( 3 Pi / 16 )//    data8 0x3FE6A09E667F3BCD // sin ( 4 Pi / 16 )    data8 0x3FE6A09E667F3BCD // cos ( 4 Pi / 16 )//    data8 0x3FEA9B66290EA1A3 // sin ( 5 Pi / 16 )    data8 0x3FE1C73B39AE68C8 // cos ( 5 Pi / 16 )//    data8 0x3FED906BCF328D46 // sin ( 6 Pi / 16 )    data8 0x3FD87DE2A6AEA963 // cos ( 6 Pi / 16 )//    data8 0x3FEF6297CFF75CB0 // sin ( 7 Pi / 16 )    data8 0x3FC8F8B83C69A60B // cos ( 7 Pi / 16 )//    data8 0x3FF0000000000000 // sin ( 8 Pi / 16 )    data8 0x0000000000000000 // cos ( 8 Pi / 16 )//    data8 0x3FEF6297CFF75CB0 // sin ( 9 Pi / 16 )    data8 0xBFC8F8B83C69A60B // cos ( 9 Pi / 16 )//    data8 0x3FED906BCF328D46 // sin ( 10 Pi / 16 )    data8 0xBFD87DE2A6AEA963 // cos ( 10 Pi / 16 )//    data8 0x3FEA9B66290EA1A3 // sin ( 11 Pi / 16 )    data8 0xBFE1C73B39AE68C8 // cos ( 11 Pi / 16 )//    data8 0x3FE6A09E667F3BCD // sin ( 12 Pi / 16 )    data8 0xBFE6A09E667F3BCD // cos ( 12 Pi / 16 )//    data8 0x3FE1C73B39AE68C8 // sin ( 13 Pi / 16 )    data8 0xBFEA9B66290EA1A3 // cos ( 13 Pi / 16 )//    data8 0x3FD87DE2A6AEA963 // sin ( 14 Pi / 16 )    data8 0xBFED906BCF328D46 // cos ( 14 Pi / 16 )//    data8 0x3FC8F8B83C69A60B // sin ( 15 Pi / 16 )    data8 0xBFEF6297CFF75CB0 // cos ( 15 Pi / 16 )//    data8 0x0000000000000000 // sin ( 16 Pi / 16 )    data8 0xBFF0000000000000 // cos ( 16 Pi / 16 )//    data8 0xBFC8F8B83C69A60B // sin ( 17 Pi / 16 )    data8 0xBFEF6297CFF75CB0 // cos ( 17 Pi / 16 )//    data8 0xBFD87DE2A6AEA963 // sin ( 18 Pi / 16 )    data8 0xBFED906BCF328D46 // cos ( 18 Pi / 16 )//    data8 0xBFE1C73B39AE68C8 // sin ( 19 Pi / 16 )    data8 0xBFEA9B66290EA1A3 // cos ( 19 Pi / 16 )//    data8 0xBFE6A09E667F3BCD // sin ( 20 Pi / 16 )    data8 0xBFE6A09E667F3BCD // cos ( 20 Pi / 16 )//    data8 0xBFEA9B66290EA1A3 // sin ( 21 Pi / 16 )    data8 0xBFE1C73B39AE68C8 // cos ( 21 Pi / 16 )//    data8 0xBFED906BCF328D46 // sin ( 22 Pi / 16 )    data8 0xBFD87DE2A6AEA963 // cos ( 22 Pi / 16 )//    data8 0xBFEF6297CFF75CB0 // sin ( 23 Pi / 16 )    data8 0xBFC8F8B83C69A60B // cos ( 23 Pi / 16 )//    data8 0xBFF0000000000000 // sin ( 24 Pi / 16 )    data8 0x0000000000000000 // cos ( 24 Pi / 16 )//    data8 0xBFEF6297CFF75CB0 // sin ( 25 Pi / 16 )    data8 0x3FC8F8B83C69A60B // cos ( 25 Pi / 16 )//

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲伦在线观看| 精品久久人人做人人爽| 91一区一区三区| 欧美三级蜜桃2在线观看| 欧美自拍丝袜亚洲| 欧美精品久久久久久久多人混战| 欧美日韩国产综合久久| 日韩视频免费观看高清完整版在线观看 | 一区二区三区影院| 一区二区欧美在线观看| 国产日本欧洲亚洲| 亚洲午夜久久久久久久久电影院| 日韩成人午夜精品| 丁香婷婷综合网| 欧美综合一区二区三区| 337p亚洲精品色噜噜| 国产精品免费久久| 亚洲一区二区精品3399| 经典三级一区二区| 成人午夜在线播放| 9i在线看片成人免费| 日韩视频在线永久播放| 日本一区二区高清| 日韩制服丝袜先锋影音| 国产精品综合二区| 欧美日韩一区视频| 91精品国产一区二区| 日本一区二区视频在线观看| 亚洲va韩国va欧美va| 国产在线国偷精品产拍免费yy| 日本韩国一区二区| 亚洲精品一线二线三线无人区| 亚洲资源中文字幕| 国产毛片精品视频| 在线播放欧美女士性生活| 日本一区二区高清| 五月天网站亚洲| av高清不卡在线| 91精品国产色综合久久不卡蜜臀 | 亚洲综合一二区| 久久99精品国产麻豆婷婷洗澡| 国产成a人亚洲精| 91麻豆精品国产自产在线观看一区| 国产欧美精品一区| 麻豆成人久久精品二区三区红 | 国产精品三级av| 麻豆精品久久精品色综合| 色欧美乱欧美15图片| 欧美激情自拍偷拍| 久久黄色级2电影| 成人黄色大片在线观看| 国产视频亚洲色图| 日本视频一区二区三区| 9191久久久久久久久久久| 国内精品视频666| 91丨九色丨国产丨porny| 亚洲国产精品99久久久久久久久 | 国产午夜精品久久久久久久| 男人的天堂久久精品| 欧美在线短视频| 亚洲精选视频免费看| 99久久精品费精品国产一区二区| 亚洲精品一区二区三区蜜桃下载 | 亚洲大片免费看| 国产一区二区三区日韩| 欧美日韩国产系列| 亚洲一区二区影院| eeuss鲁片一区二区三区在线观看| 2020日本不卡一区二区视频| 青青草国产成人99久久| 欧美怡红院视频| 午夜一区二区三区在线观看| 91麻豆福利精品推荐| 亚洲另类一区二区| av一区二区久久| 欧美精选在线播放| 午夜一区二区三区在线观看| 91性感美女视频| 亚洲人精品一区| 91色乱码一区二区三区| 久久丝袜美腿综合| 国产一区二区影院| 精品久久久久久久人人人人传媒| 九一久久久久久| 亚洲精品一区二区三区蜜桃下载| 国产精品一区二区久激情瑜伽 | 亚洲欧美综合在线精品| 国产精品伦一区| 日韩成人精品在线观看| 91在线观看视频| 欧美日韩一区不卡| 欧美大片免费久久精品三p| 日韩精品一二区| 欧美日韩一区视频| 午夜一区二区三区视频| 欧美高清一级片在线| 亚洲日本在线a| 欧美三级电影在线看| 日韩制服丝袜先锋影音| 久久婷婷综合激情| 成熟亚洲日本毛茸茸凸凹| 一区二区三区四区亚洲| 欧美午夜精品一区| 天天综合网天天综合色| 精品国精品国产| 国产成人av自拍| 亚洲国产精品自拍| 欧美一区二区三区在线看 | 成人丝袜18视频在线观看| 亚洲乱码中文字幕| 3d动漫精品啪啪| 日韩不卡一区二区三区| 国产精品午夜电影| 色偷偷88欧美精品久久久| 美女视频免费一区| 国产日韩欧美麻豆| 欧美午夜精品一区| 久久99精品视频| 亚洲人成在线播放网站岛国| 欧美日韩免费视频| 国产精品自拍三区| 亚洲日本va午夜在线电影| 欧美精品黑人性xxxx| 国产精品18久久久久久vr| 日韩毛片视频在线看| 日韩午夜av电影| 国产成人精品aa毛片| 亚洲18女电影在线观看| 2023国产精华国产精品| 色婷婷亚洲综合| 日本大胆欧美人术艺术动态| 久久人人97超碰com| 91香蕉国产在线观看软件| 亚欧色一区w666天堂| 国产日韩欧美综合在线| 91福利小视频| 岛国av在线一区| 日本亚洲电影天堂| 亚洲黄一区二区三区| 精品裸体舞一区二区三区| 日本韩国一区二区三区| 国产一区在线精品| 一区二区三区**美女毛片| 国产欧美一区二区精品性色超碰| 欧美色网站导航| 91在线无精精品入口| 看电视剧不卡顿的网站| 亚洲制服丝袜av| 欧美高清在线精品一区| 精品久久五月天| 欧美视频在线一区二区三区| 成人av网站免费观看| 另类综合日韩欧美亚洲| 国产精品传媒视频| 国产午夜精品一区二区三区嫩草| 在线电影国产精品| 欧美少妇一区二区| www.欧美日韩国产在线| 国产精品一区二区在线看| 午夜久久久久久久久久一区二区| 夜夜嗨av一区二区三区| 久久夜色精品国产欧美乱极品| 欧美日韩国产一二三| 91女厕偷拍女厕偷拍高清| 久久er精品视频| 天堂成人国产精品一区| 国产精品嫩草影院av蜜臀| 久久影院午夜片一区| 欧美日韩一区二区在线观看| 在线观看成人免费视频| 成人三级伦理片| 风间由美一区二区av101 | 精品嫩草影院久久| 91福利资源站| 国产成人鲁色资源国产91色综| 蜜臀91精品一区二区三区| 丝袜美腿高跟呻吟高潮一区| 亚洲欧洲综合另类| 国产色产综合产在线视频| 欧美猛男男办公室激情| 色噜噜狠狠一区二区三区果冻| 成熟亚洲日本毛茸茸凸凹| 成人激情免费视频| 国产成人a级片| 成人av动漫在线| 免费观看久久久4p| 九九精品视频在线看| 日本vs亚洲vs韩国一区三区二区 | 日韩毛片高清在线播放| 中文字幕乱码日本亚洲一区二区| 国产亚洲精品aa| 国产亚洲精品aa午夜观看| 国产精品美女久久久久久| 欧美国产1区2区| 亚洲免费av高清| 伊人色综合久久天天人手人婷| 亚洲自拍与偷拍| 香蕉加勒比综合久久| 蜜桃av噜噜一区二区三区小说| 欧美aaaaaa午夜精品|