?? s_cosl.s
字號:
data8 0xAAAA000000000000, 0x0000BFFC // PP_1_hidata8 0xB8EF1D2ABAF69EEA, 0x00003FEC // PP_4data8 0xD00D00D00D03BB69, 0x0000BFF2 // PP_3data8 0x8888888888888962, 0x00003FF8 // PP_2data8 0xAAAAAAAAAAAB0000, 0x0000BFEC // PP_1_loLOCAL_OBJECT_END(sincosl_table_pp)LOCAL_OBJECT_START(sincosl_table_qq)data8 0xD56232EFC2B0FE52, 0x00003FD2 // QQ_8data8 0xC9C99ABA2B48DCA6, 0x0000BFDA // QQ_7data8 0x8F76C6509C716658, 0x00003FE2 // QQ_6data8 0x93F27DBAFDA8D0FC, 0x0000BFE9 // QQ_5data8 0xAAAAAAAAAAAAAAAA, 0x0000BFFC // S_1data8 0x8000000000000000, 0x0000BFFE // QQ_1data8 0xD00D00D00C6E5041, 0x00003FEF // QQ_4data8 0xB60B60B60B607F60, 0x0000BFF5 // QQ_3data8 0xAAAAAAAAAAAAAA9B, 0x00003FFA // QQ_2LOCAL_OBJECT_END(sincosl_table_qq)LOCAL_OBJECT_START(sincosl_table_c)data8 0xFFFFFFFFFFFFFFFE, 0x0000BFFD // C_1data8 0xAAAAAAAAAAAA719F, 0x00003FFA // C_2data8 0xB60B60B60356F994, 0x0000BFF5 // C_3data8 0xD00CFFD5B2385EA9, 0x00003FEF // C_4data8 0x93E4BD18292A14CD, 0x0000BFE9 // C_5LOCAL_OBJECT_END(sincosl_table_c)LOCAL_OBJECT_START(sincosl_table_s)data8 0xAAAAAAAAAAAAAAAA, 0x0000BFFC // S_1data8 0x88888888888868DB, 0x00003FF8 // S_2data8 0xD00D00D0055EFD4B, 0x0000BFF2 // S_3data8 0xB8EF1C5D839730B9, 0x00003FEC // S_4data8 0xD71EA3A4E5B3F492, 0x0000BFE5 // S_5data4 0x38800000, 0xB8800000 // two**-14 and -two**-14LOCAL_OBJECT_END(sincosl_table_s)FR_Input_X = f8FR_Result = f8FR_r = f8FR_c = f9FR_norm_x = f9FR_inv_pi_2to63 = f10FR_rshf_2to64 = f11FR_2tom64 = f12FR_rshf = f13FR_N_float_signif = f14FR_abs_x = f15FR_Pi_by_4 = f34FR_Two_to_M14 = f35FR_Neg_Two_to_M14 = f36FR_Two_to_M33 = f37FR_Neg_Two_to_M33 = f38FR_Neg_Two_to_M67 = f39FR_Inv_pi_by_2 = f40FR_N_float = f41FR_N_fix = f42FR_P_1 = f43FR_P_2 = f44FR_P_3 = f45FR_s = f46FR_w = f47FR_d_2 = f48FR_tmp_result = f49FR_Z = f50FR_A = f51FR_a = f52FR_t = f53FR_U_1 = f54FR_U_2 = f55FR_C_1 = f56FR_C_2 = f57FR_C_3 = f58FR_C_4 = f59FR_C_5 = f60FR_S_1 = f61FR_S_2 = f62FR_S_3 = f63FR_S_4 = f64FR_S_5 = f65FR_poly_hi = f66FR_poly_lo = f67FR_r_hi = f68FR_r_lo = f69FR_rsq = f70FR_r_cubed = f71FR_C_hi = f72FR_N_0 = f73FR_d_1 = f74FR_V = f75FR_V_hi = f75FR_V_lo = f76FR_U_hi = f77FR_U_lo = f78FR_U_hiabs = f79FR_V_hiabs = f80FR_PP_8 = f81FR_QQ_8 = f101FR_PP_7 = f82FR_QQ_7 = f102FR_PP_6 = f83FR_QQ_6 = f103FR_PP_5 = f84FR_QQ_5 = f104FR_PP_4 = f85FR_QQ_4 = f105FR_PP_3 = f86FR_QQ_3 = f106FR_PP_2 = f87FR_QQ_2 = f107FR_QQ_1 = f108FR_r_hi_sq = f88FR_N_0_fix = f89FR_Inv_P_0 = f90FR_corr = f91FR_poly = f92FR_Neg_Two_to_M3 = f93FR_Two_to_M3 = f94FR_P_0 = f95FR_C_lo = f96FR_PP_1 = f97FR_PP_1_lo = f98FR_ArgPrime = f99FR_inexact = f100GR_exp_m2_to_m3= r36GR_N_Inc = r37GR_Sin_or_Cos = r38GR_signexp_x = r40GR_exp_x = r40GR_exp_mask = r41GR_exp_2_to_63 = r42GR_exp_2_to_m3 = r43GR_exp_2_to_24 = r44GR_sig_inv_pi = r45GR_rshf_2to64 = r46GR_exp_2tom64 = r47GR_rshf = r48GR_ad_p = r49GR_ad_d = r50GR_ad_pp = r51GR_ad_qq = r52GR_ad_c = r53GR_ad_s = r54GR_ad_ce = r55GR_ad_se = r56GR_ad_m14 = r57GR_ad_s1 = r58// Added for unwind supportGR_SAVE_B0 = r39GR_SAVE_GP = r40GR_SAVE_PFS = r41.section .textGLOBAL_IEEE754_ENTRY(sinl){ .mlx alloc r32 = ar.pfs,0,27,2,0 movl GR_sig_inv_pi = 0xa2f9836e4e44152a // significand of 1/pi}{ .mlx mov GR_Sin_or_Cos = 0x0 movl GR_rshf_2to64 = 0x47e8000000000000 // 1.1000 2^(63+64)};;{ .mfi addl GR_ad_p = @ltoff(FSINCOSL_CONSTANTS#), gp fclass.m p6, p0 = FR_Input_X, 0x1E3 // Test x natval, nan, inf mov GR_exp_2_to_m3 = 0xffff - 3 // Exponent of 2^-3}{ .mfb nop.m 999 fnorm.s1 FR_norm_x = FR_Input_X // Normalize x br.cond.sptk SINCOSL_CONTINUE};;GLOBAL_IEEE754_END(sinl)GLOBAL_IEEE754_ENTRY(cosl){ .mlx alloc r32 = ar.pfs,0,27,2,0 movl GR_sig_inv_pi = 0xa2f9836e4e44152a // significand of 1/pi}{ .mlx mov GR_Sin_or_Cos = 0x1 movl GR_rshf_2to64 = 0x47e8000000000000 // 1.1000 2^(63+64)};;{ .mfi addl GR_ad_p = @ltoff(FSINCOSL_CONSTANTS#), gp fclass.m p6, p0 = FR_Input_X, 0x1E3 // Test x natval, nan, inf mov GR_exp_2_to_m3 = 0xffff - 3 // Exponent of 2^-3}{ .mfi nop.m 999 fnorm.s1 FR_norm_x = FR_Input_X // Normalize x nop.i 999};;SINCOSL_CONTINUE:{ .mfi setf.sig FR_inv_pi_2to63 = GR_sig_inv_pi // Form 1/pi * 2^63 nop.f 999 mov GR_exp_2tom64 = 0xffff - 64 // Scaling constant to compute N}{ .mlx setf.d FR_rshf_2to64 = GR_rshf_2to64 // Form const 1.1000 * 2^(63+64) movl GR_rshf = 0x43e8000000000000 // Form const 1.1000 * 2^63};;{ .mfi ld8 GR_ad_p = [GR_ad_p] // Point to Inv_pi_by_2 fclass.m p7, p0 = FR_Input_X, 0x0b // Test x denormal nop.i 999};;{ .mfi getf.exp GR_signexp_x = FR_Input_X // Get sign and exponent of x fclass.m p10, p0 = FR_Input_X, 0x007 // Test x zero nop.i 999}{ .mib mov GR_exp_mask = 0x1ffff // Exponent mask nop.i 999(p6) br.cond.spnt SINCOSL_SPECIAL // Branch if x natval, nan, inf};;{ .mfi setf.exp FR_2tom64 = GR_exp_2tom64 // Form 2^-64 for scaling N_float nop.f 0 add GR_ad_d = 0x70, GR_ad_p // Point to constant table d}{ .mib setf.d FR_rshf = GR_rshf // Form right shift const 1.1000 * 2^63 mov GR_exp_m2_to_m3 = 0x2fffc // Form -(2^-3)(p7) br.cond.spnt SINCOSL_DENORMAL // Branch if x denormal};;SINCOSL_COMMON:{ .mfi and GR_exp_x = GR_exp_mask, GR_signexp_x // Get exponent of x fclass.nm p8, p0 = FR_Input_X, 0x1FF // Test x unsupported type mov GR_exp_2_to_63 = 0xffff + 63 // Exponent of 2^63}{ .mib add GR_ad_pp = 0x40, GR_ad_d // Point to constant table pp mov GR_exp_2_to_24 = 0xffff + 24 // Exponent of 2^24(p10) br.cond.spnt SINCOSL_ZERO // Branch if x zero};;{ .mfi ldfe FR_Inv_pi_by_2 = [GR_ad_p], 16 // Load 2/pi fcmp.eq.s0 p15, p0 = FR_Input_X, f0 // Dummy to set denormal add GR_ad_qq = 0xa0, GR_ad_pp // Point to constant table qq}{ .mfi ldfe FR_Pi_by_4 = [GR_ad_d], 16 // Load pi/4 for range test nop.f 999 cmp.ge p10,p0 = GR_exp_x, GR_exp_2_to_63 // Is |x| >= 2^63};;{ .mfi ldfe FR_P_0 = [GR_ad_p], 16 // Load P_0 for pi/4 <= |x| < 2^63 fmerge.s FR_abs_x = f1, FR_norm_x // |x| add GR_ad_c = 0x90, GR_ad_qq // Point to constant table c}{ .mfi ldfe FR_Inv_P_0 = [GR_ad_d], 16 // Load 1/P_0 for pi/4 <= |x| < 2^63 nop.f 999 cmp.ge p7,p0 = GR_exp_x, GR_exp_2_to_24 // Is |x| >= 2^24};;{ .mfi ldfe FR_P_1 = [GR_ad_p], 16 // Load P_1 for pi/4 <= |x| < 2^63 nop.f 999 add GR_ad_s = 0x50, GR_ad_c // Point to constant table s}{ .mfi ldfe FR_PP_8 = [GR_ad_pp], 16 // Load PP_8 for 2^-3 < |r| < pi/4 nop.f 999 nop.i 999};;{ .mfi ldfe FR_P_2 = [GR_ad_p], 16 // Load P_2 for pi/4 <= |x| < 2^63 nop.f 999 add GR_ad_ce = 0x40, GR_ad_c // Point to end of constant table c}{ .mfi ldfe FR_QQ_8 = [GR_ad_qq], 16 // Load QQ_8 for 2^-3 < |r| < pi/4 nop.f 999 nop.i 999};;{ .mfi ldfe FR_QQ_7 = [GR_ad_qq], 16 // Load QQ_7 for 2^-3 < |r| < pi/4 fma.s1 FR_N_float_signif = FR_Input_X, FR_inv_pi_2to63, FR_rshf_2to64 add GR_ad_se = 0x40, GR_ad_s // Point to end of constant table s}{ .mib ldfe FR_PP_7 = [GR_ad_pp], 16 // Load PP_7 for 2^-3 < |r| < pi/4 mov GR_ad_s1 = GR_ad_s // Save pointer to S_1(p10) br.cond.spnt SINCOSL_ARG_TOO_LARGE // Branch if |x| >= 2^63 // Use Payne-Hanek Reduction};;{ .mfi ldfe FR_P_3 = [GR_ad_p], 16 // Load P_3 for pi/4 <= |x| < 2^63 fmerge.se FR_r = FR_norm_x, FR_norm_x // r = x, in case |x| < pi/4 add GR_ad_m14 = 0x50, GR_ad_s // Point to constant table m14}{ .mfb ldfps FR_Two_to_M3, FR_Neg_Two_to_M3 = [GR_ad_d], 8 fma.s1 FR_rsq = FR_norm_x, FR_norm_x, f0 // rsq = x*x, in case |x| < pi/4(p7) br.cond.spnt SINCOSL_LARGER_ARG // Branch if 2^24 <= |x| < 2^63 // Use pre-reduction};;{ .mmf ldfe FR_PP_6 = [GR_ad_pp], 16 // Load PP_6 for normal path ldfe FR_QQ_6 = [GR_ad_qq], 16 // Load QQ_6 for normal path fmerge.se FR_c = f0, f0 // c = 0 in case |x| < pi/4};;{ .mmf ldfe FR_PP_5 = [GR_ad_pp], 16 // Load PP_5 for normal path ldfe FR_QQ_5 = [GR_ad_qq], 16 // Load QQ_5 for normal path nop.f 999};;// Here if 0 < |x| < 2^24{ .mfi ldfe FR_S_5 = [GR_ad_se], -16 // Load S_5 if i_1=0 fcmp.lt.s1 p6, p7 = FR_abs_x, FR_Pi_by_4 // Test |x| < pi/4 nop.i 999}{ .mfi ldfe FR_C_5 = [GR_ad_ce], -16 // Load C_5 if i_1=1 fms.s1 FR_N_float = FR_N_float_signif, FR_2tom64, FR_rshf nop.i 999};;{ .mmi ldfe FR_S_4 = [GR_ad_se], -16 // Load S_4 if i_1=0 ldfe FR_C_4 = [GR_ad_ce], -16 // Load C_4 if i_1=1 nop.i 999};;//// N = Arg * 2/pi// Check if Arg < pi/4////// Case 2: Convert integer N_fix back to normalized floating-point value.// Case 1: p8 is only affected when p6 is set////// Grab the integer part of N and call it N_fix//{ .mfi(p7) ldfps FR_Two_to_M33, FR_Neg_Two_to_M33 = [GR_ad_d], 8(p6) fma.s1 FR_r_cubed = FR_r, FR_rsq, f0 // r^3 if |x| < pi/4(p6) mov GR_N_Inc = GR_Sin_or_Cos // N_Inc if |x| < pi/4};;// If |x| < pi/4, r = x and c = 0// lf |x| < pi/4, is x < 2**(-3).// r = Arg// c = 0{ .mmi(p7) getf.sig GR_N_Inc = FR_N_float_signif(p6) cmp.lt.unc p8,p0 = GR_exp_x, GR_exp_2_to_m3 // Is |x| < 2^-3(p6) tbit.z p9,p10 = GR_N_Inc, 0 // p9 if i_1=0, N mod 4 = 0,1 // p10 if i_1=1, N mod 4 = 2,3};;//// lf |x| < pi/4, is -2**(-3)< x < 2**(-3) - set p8.// If |x| >= pi/4,// Create the right N for |x| < pi/4 and otherwise// Case 2: Place integer part of N in GP register//{ .mbb nop.m 999(p8) br.cond.spnt SINCOSL_SMALL_R_0 // Branch if 0 < |x| < 2^-3(p6) br.cond.spnt SINCOSL_NORMAL_R_0 // Branch if 2^-3 <= |x| < pi/4};;// Here if pi/4 <= |x| < 2^24{ .mfi ldfs FR_Neg_Two_to_M67 = [GR_ad_d], 8 // Load -2^-67 fnma.s1 FR_s = FR_N_float, FR_P_1, FR_Input_X // s = -N * P_1 + Arg add GR_N_Inc = GR_N_Inc, GR_Sin_or_Cos // Adjust N_Inc for sin/cos}{ .mfi nop.m 999 fma.s1 FR_w = FR_N_float, FR_P_2, f0 // w = N * P_2 nop.i 999};;{ .mfi nop.m 999 fms.s1 FR_r = FR_s, f1, FR_w // r = s - w, assume |s| >= 2^-33 tbit.z p9,p10 = GR_N_Inc, 0 // p9 if i_1=0, N mod 4 = 0,1 // p10 if i_1=1, N mod 4 = 2,3};;{ .mfi nop.m 999 fcmp.lt.s1 p7, p6 = FR_s, FR_Two_to_M33 nop.i 999};;{ .mfi nop.m 999(p7) fcmp.gt.s1 p7, p6 = FR_s, FR_Neg_Two_to_M33 // p6 if |s| >= 2^-33, else p7 nop.i 999};;{ .mfi nop.m 999 fms.s1 FR_c = FR_s, f1, FR_r // c = s - r, for |s| >= 2^-33 nop.i 999}{ .mfi nop.m 999 fma.s1 FR_rsq = FR_r, FR_r, f0 // rsq = r * r, for |s| >= 2^-33 nop.i 999};;{ .mfi nop.m 999(p7) fma.s1 FR_w = FR_N_float, FR_P_3, f0 nop.i 999};;{ .mmf(p9) ldfe FR_C_1 = [GR_ad_pp], 16 // Load C_1 if i_1=0(p10) ldfe FR_S_1 = [GR_ad_qq], 16 // Load S_1 if i_1=1 frcpa.s1 FR_r_hi, p15 = f1, FR_r // r_hi = frcpa(r)};;{ .mfi nop.m 999(p6) fcmp.lt.unc.s1 p8, p13 = FR_r, FR_Two_to_M3 // If big s, test r with 2^-3 nop.i 999};;{ .mfi nop.m 999(p7) fma.s1 FR_U_1 = FR_N_float, FR_P_2, FR_w nop.i 999};;//// For big s: r = s - w: No futher reduction is necessary// For small s: w = N * P_3 (change sign) More reduction//{ .mfi nop.m 999(p8) fcmp.gt.s1 p8, p13 = FR_r, FR_Neg_Two_to_M3 // If big s, p8 if |r| < 2^-3 nop.i 999 ;;}{ .mfi nop.m 999(p9) fma.s1 FR_poly = FR_rsq, FR_PP_8, FR_PP_7 // poly = rsq*PP_8+PP_7 if i_1=0 nop.i 999}{ .mfi nop.m 999(p10) fma.s1 FR_poly = FR_rsq, FR_QQ_8, FR_QQ_7 // poly = rsq*QQ_8+QQ_7 if i_1=1 nop.i 999};;{ .mfi nop.m 999(p7) fms.s1 FR_r = FR_s, f1, FR_U_1 nop.i 999};;{ .mfi nop.m 999(p6) fma.s1 FR_r_cubed = FR_r, FR_rsq, f0 // rcubed = r * rsq nop.i 999};;{ .mfi//// For big s: Is |r| < 2**(-3)?// For big s: c = S - r// For small s: U_1 = N * P_2 + w//// If p8 is set, prepare to branch to Small_R.// If p9 is set, prepare to branch to Normal_R.// For big s, r is complete here.////// For big s: c = c + w (w has not been negated.)// For small s: r = S - U_1// nop.m 999(p6) fms.s1 FR_c = FR_c, f1, FR_w nop.i 999}{ .mbb nop.m 999(p8) br.cond.spnt SINCOSL_SMALL_R_1 // Branch if |s|>=2^-33, |r| < 2^-3, // and pi/4 <= |x| < 2^24(p13) br.cond.sptk SINCOSL_NORMAL_R_1 // Branch if |s|>=2^-33, |r| >= 2^-3, // and pi/4 <= |x| < 2^24};;SINCOSL_S_TINY://// Here if |s| < 2^-33, and pi/4 <= |x| < 2^24//{ .mfi fms.s1 FR_U_2 = FR_N_float, FR_P_2, FR_U_1//// c = S - U_1// r = S_1 * r////};;{ .mmi nop.m 999//// Get [i_0,i_1] - two lsb of N_fix_gr.// Do dummy fmpy so inexact is always set.// tbit.z p9,p10 = GR_N_Inc, 0 // p9 if i_1=0, N mod 4 = 0,1 // p10 if i_1=1, N mod 4 = 2,3};;//// For small s: U_2 = N * P_2 - U_1// S_1 stored constant - grab the one stored with the// coefficients.//{ .mfi ldfe FR_S_1 = [GR_ad_s1], 16//// Check if i_1 and i_0 != 0//(p10) fma.s1 FR_poly = f0, f1, FR_Neg_Two_to_M67 tbit.z p11,p12 = GR_N_Inc, 1 // p11 if i_0=0, N mod 4 = 0,2
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -