亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? s_asinhl.s

?? glibc 庫, 不僅可以學(xué)習(xí)使用庫函數(shù),還可以學(xué)習(xí)函數(shù)的具體實現(xiàn),是提高功力的好資料
?? S
?? 第 1 頁 / 共 3 頁
字號:
.file "asinhl.s"// Copyright (c) 2000 - 2003, Intel Corporation// All rights reserved.//// Contributed 2000 by the Intel Numerics Group, Intel Corporation//// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are// met://// * Redistributions of source code must retain the above copyright// notice, this list of conditions and the following disclaimer.//// * Redistributions in binary form must reproduce the above copyright// notice, this list of conditions and the following disclaimer in the// documentation and/or other materials provided with the distribution.//// * The name of Intel Corporation may not be used to endorse or promote// products derived from this software without specific prior written// permission.// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Intel Corporation is the author of this code, and requests that all// problem reports or change requests be submitted to it directly at // http://www.intel.com/software/products/opensource/libraries/num.htm.////*********************************************************************//// History: // 09/04/01 Initial version// 09/13/01 Performance improved, symmetry problems fixed// 10/10/01 Performance improved, split issues removed// 12/11/01 Changed huges_logp to not be global// 05/20/02 Cleaned up namespace and sf0 syntax// 02/10/03 Reordered header: .section, .global, .proc, .align;//          used data8 for long double table values////*********************************************************************//// API//==============================================================// long double asinhl(long double);//// Overview of operation//==============================================================// // There are 6 paths:// 1. x = 0, [S,Q]Nan or +/-INF//    Return asinhl(x) = x + x;// // 2. x = + denormal//    Return asinhl(x) = x - x^2;//            // 3. x = - denormal//    Return asinhl(x) = x + x^2;//            // 4. 'Near 0': max denormal < |x| < 1/128//    Return asinhl(x) = sign(x)*(x+x^3*(c3+x^2*(c5+x^2*(c7+x^2*(c9)))));//// 5. 'Huges': |x| > 2^63//    Return asinhl(x) = sign(x)*(logl(2*x));//                    // 6. 'Main path': 1/128 < |x| < 2^63//    b_hi + b_lo = x + sqrt(x^2 + 1);//    asinhl(x) = sign(x)*(log_special(b_hi, b_lo));//  // Algorithm description                                                      //==============================================================//// Main path algorithm // ( thanks to Peter Markstein for the idea of sqrt(x^2+1) computation! )// *************************************************************************//// There are 3 parts of x+sqrt(x^2+1) computation:////  1) p2 = (p2_hi+p2_lo) = x^2+1 obtaining//     ------------------------------------//     p2_hi = x2_hi + 1, where x2_hi = x * x;//     p2_lo = x2_lo + p1_lo, where //                            x2_lo = FMS(x*x-x2_hi), //                            p1_lo = (1 - p2_hi) + x2_hi;////  2) g = (g_hi+g_lo) = sqrt(p2) = sqrt(p2_hi+p2_lo)//     ----------------------------------------------//     r = invsqrt(p2_hi) (8-bit reciprocal square root approximation);//     g = p2_hi * r (first 8 bit-approximation of sqrt);//     //     h = 0.5 * r;//     e = 0.5 - g * h;//     g = g * e + g (second 16 bit-approximation of sqrt);//     //     h = h * e + h;//     e = 0.5 - g * h;//     g = g * e + g (third 32 bit-approximation of sqrt);////     h = h * e + h;//     e = 0.5 - g * h;//     g_hi = g * e + g (fourth 64 bit-approximation of sqrt);//  //     Remainder computation://     h = h * e + h;//     d = (p2_hi - g_hi * g_hi) + p2_lo;//     g_lo = d * h;////  3) b = (b_hi + b_lo) = x + g, where g = (g_hi + g_lo) = sqrt(x^2+1)//     -------------------------------------------------------------------//     b_hi = (g_hi + x) + gl;//     b_lo = (g_hi - b_hi) + x + gl;//     //  Now we pass b presented as sum b_hi + b_lo to special version//  of logl function which accept a pair of arguments as//  'mutiprecision' value.   //  //  Special log algorithm overview//  ================================//   Here we use a table lookup method. The basic idea is that in//   order to compute logl(Arg) = logl (Arg-1) for an argument Arg in [1,2), //   we construct a value G such that G*Arg is close to 1 and that//   logl(1/G) is obtainable easily from a table of values calculated//   beforehand. Thus////      logl(Arg) = logl(1/G) + logl((G*Arg - 1))////   Because |G*Arg - 1| is small, the second term on the right hand//   side can be approximated by a short polynomial. We elaborate//   this method in four steps.////   Step 0: Initialization////   We need to calculate logl( X ). Obtain N, S_hi such that////      X = 2^N * ( S_hi + S_lo )   exactly////   where S_hi in [1,2) and S_lo is a correction to S_hi in the sense//   that |S_lo| <= ulp(S_hi).////   For the special version of logl: S_lo = b_lo//   !-----------------------------------------------!////   Step 1: Argument Reduction////   Based on S_hi, obtain G_1, G_2, G_3 from a table and calculate////      G := G_1 * G_2 * G_3//      r := (G * S_hi - 1) + G * S_lo////   These G_j's have the property that the product is exactly //   representable and that |r| < 2^(-12) as a result.////   Step 2: Approximation////   logl(1 + r) is approximated by a short polynomial poly(r).////   Step 3: Reconstruction////   Finally, ////   logl( X )   =   logl( 2^N * (S_hi + S_lo) )//                 ~=~  N*logl(2) + logl(1/G) + logl(1 + r)//                 ~=~  N*logl(2) + logl(1/G) + poly(r).////   For detailed description see logl or log1pl function, regular path.//// Registers used//==============================================================// Floating Point registers used: // f8, input// f32 -> f101 (70 registers)// General registers used:  // r32 -> r57 (26 registers)// Predicate registers used:// p6 -> p11// p6  for '0, NaNs, Inf' path// p7  for '+ denormals' path // p8  for 'near 0' path// p9  for 'huges' path// p10 for '- denormals' path // p11 for negative values//// Data tables//==============================================================     RODATA.align 64// C7, C9 'near 0' polynomial coefficientsLOCAL_OBJECT_START(Poly_C_near_0_79)data8 0xF8DC939BBEDD5A54, 0x00003FF9data8 0xB6DB6DAB21565AC5, 0x0000BFFALOCAL_OBJECT_END(Poly_C_near_0_79)// C3, C5 'near 0' polynomial coefficientsLOCAL_OBJECT_START(Poly_C_near_0_35)data8 0x999999999991D582, 0x00003FFBdata8 0xAAAAAAAAAAAAAAA9, 0x0000BFFCLOCAL_OBJECT_END(Poly_C_near_0_35)// Q coeffs LOCAL_OBJECT_START(Constants_Q)data4  0x00000000,0xB1721800,0x00003FFE,0x00000000 data4  0x4361C4C6,0x82E30865,0x0000BFE2,0x00000000data4  0x328833CB,0xCCCCCAF2,0x00003FFC,0x00000000data4  0xA9D4BAFB,0x80000077,0x0000BFFD,0x00000000data4  0xAAABE3D2,0xAAAAAAAA,0x00003FFD,0x00000000data4  0xFFFFDAB7,0xFFFFFFFF,0x0000BFFD,0x00000000 LOCAL_OBJECT_END(Constants_Q)// Z1 - 16 bit fixedLOCAL_OBJECT_START(Constants_Z_1)data4  0x00008000data4  0x00007879data4  0x000071C8data4  0x00006BCBdata4  0x00006667data4  0x00006187data4  0x00005D18data4  0x0000590Cdata4  0x00005556data4  0x000051ECdata4  0x00004EC5data4  0x00004BDBdata4  0x00004925data4  0x0000469Fdata4  0x00004445data4  0x00004211LOCAL_OBJECT_END(Constants_Z_1)// G1 and H1 - IEEE single and h1 - IEEE doubleLOCAL_OBJECT_START(Constants_G_H_h1)data4  0x3F800000,0x00000000data8  0x0000000000000000data4  0x3F70F0F0,0x3D785196data8  0x3DA163A6617D741Cdata4  0x3F638E38,0x3DF13843data8  0x3E2C55E6CBD3D5BBdata4  0x3F579430,0x3E2FF9A0data8  0xBE3EB0BFD86EA5E7data4  0x3F4CCCC8,0x3E647FD6data8  0x3E2E6A8C86B12760data4  0x3F430C30,0x3E8B3AE7data8  0x3E47574C5C0739BAdata4  0x3F3A2E88,0x3EA30C68data8  0x3E20E30F13E8AF2Fdata4  0x3F321640,0x3EB9CEC8data8  0xBE42885BF2C630BDdata4  0x3F2AAAA8,0x3ECF9927data8  0x3E497F3497E577C6data4  0x3F23D708,0x3EE47FC5data8  0x3E3E6A6EA6B0A5ABdata4  0x3F1D89D8,0x3EF8947Ddata8  0xBDF43E3CD328D9BEdata4  0x3F17B420,0x3F05F3A1data8  0x3E4094C30ADB090Adata4  0x3F124920,0x3F0F4303data8  0xBE28FBB2FC1FE510data4  0x3F0D3DC8,0x3F183EBFdata8  0x3E3A789510FDE3FAdata4  0x3F088888,0x3F20EC80data8  0x3E508CE57CC8C98Fdata4  0x3F042108,0x3F29516Adata8  0xBE534874A223106CLOCAL_OBJECT_END(Constants_G_H_h1)// Z2 - 16 bit fixedLOCAL_OBJECT_START(Constants_Z_2)data4  0x00008000data4  0x00007F81data4  0x00007F02data4  0x00007E85data4  0x00007E08data4  0x00007D8Ddata4  0x00007D12data4  0x00007C98data4  0x00007C20data4  0x00007BA8data4  0x00007B31data4  0x00007ABBdata4  0x00007A45data4  0x000079D1data4  0x0000795Ddata4  0x000078EBLOCAL_OBJECT_END(Constants_Z_2)// G2 and H2 - IEEE single and h2 - IEEE doubleLOCAL_OBJECT_START(Constants_G_H_h2)data4  0x3F800000,0x00000000data8  0x0000000000000000data4  0x3F7F00F8,0x3B7F875Ddata8  0x3DB5A11622C42273data4  0x3F7E03F8,0x3BFF015Bdata8  0x3DE620CF21F86ED3data4  0x3F7D08E0,0x3C3EE393data8  0xBDAFA07E484F34EDdata4  0x3F7C0FC0,0x3C7E0586data8  0xBDFE07F03860BCF6data4  0x3F7B1880,0x3C9E75D2data8  0x3DEA370FA78093D6data4  0x3F7A2328,0x3CBDC97Adata8  0x3DFF579172A753D0data4  0x3F792FB0,0x3CDCFE47data8  0x3DFEBE6CA7EF896Bdata4  0x3F783E08,0x3CFC15D0data8  0x3E0CF156409ECB43data4  0x3F774E38,0x3D0D874Ddata8  0xBE0B6F97FFEF71DFdata4  0x3F766038,0x3D1CF49Bdata8  0xBE0804835D59EEE8data4  0x3F757400,0x3D2C531Ddata8  0x3E1F91E9A9192A74data4  0x3F748988,0x3D3BA322data8  0xBE139A06BF72A8CDdata4  0x3F73A0D0,0x3D4AE46Fdata8  0x3E1D9202F8FBA6CFdata4  0x3F72B9D0,0x3D5A1756data8  0xBE1DCCC4BA796223data4  0x3F71D488,0x3D693B9Ddata8  0xBE049391B6B7C239LOCAL_OBJECT_END(Constants_G_H_h2)// G3 and H3 - IEEE single and h3 - IEEE double LOCAL_OBJECT_START(Constants_G_H_h3)data4  0x3F7FFC00,0x38800100data8  0x3D355595562224CDdata4  0x3F7FF400,0x39400480data8  0x3D8200A206136FF6data4  0x3F7FEC00,0x39A00640data8  0x3DA4D68DE8DE9AF0data4  0x3F7FE400,0x39E00C41data8  0xBD8B4291B10238DCdata4  0x3F7FDC00,0x3A100A21data8  0xBD89CCB83B1952CAdata4  0x3F7FD400,0x3A300F22data8  0xBDB107071DC46826data4  0x3F7FCC08,0x3A4FF51Cdata8  0x3DB6FCB9F43307DBdata4  0x3F7FC408,0x3A6FFC1Ddata8  0xBD9B7C4762DC7872data4  0x3F7FBC10,0x3A87F20Bdata8  0xBDC3725E3F89154Adata4  0x3F7FB410,0x3A97F68Bdata8  0xBD93519D62B9D392data4  0x3F7FAC18,0x3AA7EB86data8  0x3DC184410F21BD9Ddata4  0x3F7FA420,0x3AB7E101data8  0xBDA64B952245E0A6data4  0x3F7F9C20,0x3AC7E701data8  0x3DB4B0ECAABB34B8data4  0x3F7F9428,0x3AD7DD7Bdata8  0x3D9923376DC40A7Edata4  0x3F7F8C30,0x3AE7D474data8  0x3DC6E17B4F2083D3data4  0x3F7F8438,0x3AF7CBEDdata8  0x3DAE314B811D4394data4  0x3F7F7C40,0x3B03E1F3data8  0xBDD46F21B08F2DB1data4  0x3F7F7448,0x3B0BDE2Fdata8  0xBDDC30A46D34522Bdata4  0x3F7F6C50,0x3B13DAAAdata8  0x3DCB0070B1F473DBdata4  0x3F7F6458,0x3B1BD766data8  0xBDD65DDC6AD282FDdata4  0x3F7F5C68,0x3B23CC5Cdata8  0xBDCDAB83F153761Adata4  0x3F7F5470,0x3B2BC997data8  0xBDDADA40341D0F8Fdata4  0x3F7F4C78,0x3B33C711data8  0x3DCD1BD7EBC394E8data4  0x3F7F4488,0x3B3BBCC6data8  0xBDC3532B52E3E695data4  0x3F7F3C90,0x3B43BAC0data8  0xBDA3961EE846B3DEdata4  0x3F7F34A0,0x3B4BB0F4data8  0xBDDADF06785778D4data4  0x3F7F2CA8,0x3B53AF6Ddata8  0x3DCC3ED1E55CE212data4  0x3F7F24B8,0x3B5BA620data8  0xBDBA31039E382C15data4  0x3F7F1CC8,0x3B639D12data8  0x3D635A0B5C5AF197data4  0x3F7F14D8,0x3B6B9444data8  0xBDDCCB1971D34EFCdata4  0x3F7F0CE0,0x3B7393BCdata8  0x3DC7450252CD7ADAdata4  0x3F7F04F0,0x3B7B8B6Ddata8  0xBDB68F177D7F2A42LOCAL_OBJECT_END(Constants_G_H_h3)// Assembly macros//==============================================================// Floating Point RegistersFR_Arg          = f8FR_Res          = f8FR_AX           = f32FR_XLog_Hi      = f33 FR_XLog_Lo      = f34     // Special logl registersFR_Y_hi         = f35  FR_Y_lo         = f36FR_Scale        = f37FR_X_Prime      = f38 FR_S_hi         = f39  FR_W            = f40FR_G            = f41FR_H            = f42FR_wsq          = f43 FR_w4           = f44FR_h            = f45FR_w6           = f46  FR_G2           = f47FR_H2           = f48FR_poly_lo      = f49FR_P8           = f50  FR_poly_hi      = f51FR_P7           = f52  FR_h2           = f53 FR_rsq          = f54  FR_P6           = f55FR_r            = f56  FR_log2_hi      = f57  FR_log2_lo      = f58   FR_float_N      = f59 FR_Q4           = f60 FR_G3           = f61  FR_H3           = f62  FR_h3           = f63  

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产精品一区2区| 久久久久国产精品麻豆ai换脸| 亚洲日本va午夜在线影院| 国产成人精品综合在线观看 | 久久国产精品无码网站| 成人国产精品免费观看视频| 亚洲一区二区三区在线播放| 在线观看免费一区| 亚洲午夜精品网| 欧美日韩国产美女| 日韩激情视频在线观看| 日韩一级完整毛片| 激情深爱一区二区| 中文字幕中文字幕一区二区| 91搞黄在线观看| 毛片不卡一区二区| 欧美国产亚洲另类动漫| 91国偷自产一区二区开放时间| 亚洲成av人片在www色猫咪| 日韩一区二区在线观看视频| 国产精品性做久久久久久| 日本一区二区三区在线不卡| 韩国视频一区二区| 国产精品毛片久久久久久| 日本高清不卡在线观看| 蜜臀精品久久久久久蜜臀| 国产精品少妇自拍| 精品国产91乱码一区二区三区 | 一区二区欧美在线观看| 日韩欧美一区二区三区在线| 国产成人鲁色资源国产91色综| 亚洲激情欧美激情| wwwwww.欧美系列| 91麻豆精东视频| 精品影视av免费| 亚洲自拍偷拍网站| 欧美极品少妇xxxxⅹ高跟鞋| 欧美色爱综合网| 国产不卡视频在线播放| 日韩电影在线观看网站| 日韩美女精品在线| 久久一区二区视频| 欧美日韩国产成人在线91| 久久久久久电影| 不卡av在线网| 亚洲最新在线观看| 久久久亚洲精品一区二区三区| 在线精品视频小说1| 日韩欧美中文字幕精品| 亚洲国产成人tv| 欧美特级限制片免费在线观看| 一区二区三区视频在线看| 91麻豆.com| 一区二区不卡在线视频 午夜欧美不卡在| 国产99久久精品| 国产夜色精品一区二区av| 国产成人免费视频网站高清观看视频| 日韩女优毛片在线| 国产·精品毛片| 亚洲自拍欧美精品| 色哟哟一区二区三区| 亚洲18色成人| 日韩精品一区二区三区三区免费| 欧美午夜一区二区三区| 亚洲成人你懂的| 欧美日韩黄色影视| 亚洲欧洲精品一区二区三区| 日韩一区二区在线看| 国产无人区一区二区三区| 日本欧美一区二区三区| 亚洲男人电影天堂| 国产精品传媒入口麻豆| 国产欧美va欧美不卡在线| 亚洲精品一区二区三区蜜桃下载 | 欧美日韩一区成人| 日本韩国欧美一区二区三区| 99国产精品国产精品毛片| 成人夜色视频网站在线观看| 国产精品1区2区| 国产福利一区二区三区视频| 国产麻豆精品久久一二三| 精品中文字幕一区二区小辣椒| 蜜臀99久久精品久久久久久软件| 日韩福利视频网| 麻豆成人av在线| 国产精一品亚洲二区在线视频| 国产一区二区调教| 国产成人精品亚洲777人妖| 成人高清av在线| 欧美久久一二三四区| 欧美日韩国产经典色站一区二区三区| 欧美午夜片在线看| 91精品国产91久久久久久一区二区| 3751色影院一区二区三区| 日韩亚洲欧美成人一区| 欧美mv日韩mv国产网站| 国产欧美一区二区三区鸳鸯浴| 欧美国产激情二区三区| 综合久久国产九一剧情麻豆| 一区二区日韩av| 免费观看成人av| 国产成人综合亚洲91猫咪| 成人av网站在线| 欧美日韩视频专区在线播放| 欧美成人a∨高清免费观看| 国产欧美日韩三区| 一区二区高清免费观看影视大全| 日本伊人色综合网| 成人永久免费视频| 在线观看精品一区| 久久众筹精品私拍模特| 亚洲精品国产一区二区精华液| 日韩中文字幕麻豆| 国产传媒一区在线| 在线观看91视频| 久久久91精品国产一区二区精品 | 精品影视av免费| 91香蕉视频污| 欧美一区二区三区不卡| 中文字幕欧美国产| 丝袜a∨在线一区二区三区不卡| 国产成人午夜视频| 欧美高清视频不卡网| 国产精品日韩精品欧美在线| 波多野结衣欧美| 日韩一区二区免费高清| 日韩精品成人一区二区三区 | 欧美在线不卡一区| 亚洲精品一区二区三区蜜桃下载| 理论片日本一区| 亚洲国产精品久久不卡毛片| 成人精品视频一区二区三区 | 欧美一级理论性理论a| 日日摸夜夜添夜夜添国产精品 | 在线精品亚洲一区二区不卡| 精品sm捆绑视频| 亚洲伊人色欲综合网| 丁香亚洲综合激情啪啪综合| 宅男噜噜噜66一区二区66| 国产精品免费av| 国产一区高清在线| 欧美视频在线播放| 中文字幕制服丝袜一区二区三区 | 秋霞成人午夜伦在线观看| 成人免费高清在线观看| 日韩一区二区三区观看| 亚洲一区在线观看视频| 欧美乱熟臀69xxxxxx| 中文字幕一区二区三区在线观看| 丝袜亚洲精品中文字幕一区| 成人av在线电影| 2014亚洲片线观看视频免费| 亚洲成av人片一区二区| 色综合久久中文综合久久97| 国产日韩欧美a| 韩国中文字幕2020精品| 91精品在线观看入口| 亚洲成人第一页| 欧美日免费三级在线| 一区二区国产盗摄色噜噜| 91免费版pro下载短视频| 国产精品免费av| 北岛玲一区二区三区四区| 久久精品一区四区| 日韩电影免费在线观看网站| 91精品欧美久久久久久动漫| 洋洋av久久久久久久一区| www.欧美日韩| www.欧美精品一二区| 国产欧美日韩在线看| 久久97超碰国产精品超碰| 91黄视频在线| 九九热在线视频观看这里只有精品| 欧美图区在线视频| 欧美理论片在线| 欧美另类一区二区三区| 国产一区二区三区四区在线观看| 久久这里只精品最新地址| av男人天堂一区| 蜜桃精品视频在线| 国产三级欧美三级日产三级99| 欧美日韩视频在线观看一区二区三区| 亚洲欧美激情视频在线观看一区二区三区| 亚洲人精品午夜| 91麻豆蜜桃一区二区三区| 国产精品成人在线观看| 99精品一区二区| 亚洲成人激情自拍| 7777精品久久久大香线蕉 | 日韩美女视频一区二区在线观看| 欧美刺激午夜性久久久久久久| 一区二区三国产精华液| 一本色道亚洲精品aⅴ| 日韩美女视频一区二区| 欧美高清视频不卡网| 日韩国产一二三区| 91精品久久久久久久91蜜桃| 伦理电影国产精品| 精品成人一区二区三区| 成人高清免费在线播放|