亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? s_cos.s

?? glibc 庫, 不僅可以學習使用庫函數,還可以學習函數的具體實現,是提高功力的好資料
?? S
?? 第 1 頁 / 共 2 頁
字號:
.file "sincos.s"// Copyright (c) 2000 - 2005, Intel Corporation// All rights reserved.//// Contributed 2000 by the Intel Numerics Group, Intel Corporation//// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are// met://// * Redistributions of source code must retain the above copyright// notice, this list of conditions and the following disclaimer.//// * Redistributions in binary form must reproduce the above copyright// notice, this list of conditions and the following disclaimer in the// documentation and/or other materials provided with the distribution.//// * The name of Intel Corporation may not be used to endorse or promote// products derived from this software without specific prior written// permission.// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.//// Intel Corporation is the author of this code, and requests that all// problem reports or change requests be submitted to it directly at// http://www.intel.com/software/products/opensource/libraries/num.htm.//// History//==============================================================// 02/02/00 Initial version// 04/02/00 Unwind support added.// 06/16/00 Updated tables to enforce symmetry// 08/31/00 Saved 2 cycles in main path, and 9 in other paths.// 09/20/00 The updated tables regressed to an old version, so reinstated them// 10/18/00 Changed one table entry to ensure symmetry// 01/03/01 Improved speed, fixed flag settings for small arguments.// 02/18/02 Large arguments processing routine excluded// 05/20/02 Cleaned up namespace and sf0 syntax// 06/03/02 Insure inexact flag set for large arg result// 09/05/02 Work range is widened by reduction strengthen (3 parts of Pi/16)// 02/10/03 Reordered header: .section, .global, .proc, .align// 08/08/03 Improved performance// 10/28/04 Saved sincos_r_sincos to avoid clobber by dynamic loader // 03/31/05 Reformatted delimiters between data tables// API//==============================================================// double sin( double x);// double cos( double x);//// Overview of operation//==============================================================//// Step 1// ======// Reduce x to region -1/2*pi/2^k ===== 0 ===== +1/2*pi/2^k  where k=4//    divide x by pi/2^k.//    Multiply by 2^k/pi.//    nfloat = Round result to integer (round-to-nearest)//// r = x -  nfloat * pi/2^k//    Do this as ((((x -  nfloat * HIGH(pi/2^k))) - //                        nfloat * LOW(pi/2^k)) - //                        nfloat * LOWEST(pi/2^k) for increased accuracy.//    pi/2^k is stored as two numbers that when added make pi/2^k.//       pi/2^k = HIGH(pi/2^k) + LOW(pi/2^k)//    HIGH and LOW parts are rounded to zero values, //    and LOWEST is rounded to nearest one.//// x = (nfloat * pi/2^k) + r//    r is small enough that we can use a polynomial approximation//    and is referred to as the reduced argument.//// Step 3// ======// Take the unreduced part and remove the multiples of 2pi.// So nfloat = nfloat (with lower k+1 bits cleared) + lower k+1 bits////    nfloat (with lower k+1 bits cleared) is a multiple of 2^(k+1)//    N * 2^(k+1)//    nfloat * pi/2^k = N * 2^(k+1) * pi/2^k + (lower k+1 bits) * pi/2^k//    nfloat * pi/2^k = N * 2 * pi + (lower k+1 bits) * pi/2^k//    nfloat * pi/2^k = N2pi + M * pi/2^k////// Sin(x) = Sin((nfloat * pi/2^k) + r)//        = Sin(nfloat * pi/2^k) * Cos(r) + Cos(nfloat * pi/2^k) * Sin(r)////          Sin(nfloat * pi/2^k) = Sin(N2pi + Mpi/2^k)//                               = Sin(N2pi)Cos(Mpi/2^k) + Cos(N2pi)Sin(Mpi/2^k)//                               = Sin(Mpi/2^k)////          Cos(nfloat * pi/2^k) = Cos(N2pi + Mpi/2^k)//                               = Cos(N2pi)Cos(Mpi/2^k) + Sin(N2pi)Sin(Mpi/2^k)//                               = Cos(Mpi/2^k)//// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)////// Step 4// ======// 0 <= M < 2^(k+1)// There are 2^(k+1) Sin entries in a table.// There are 2^(k+1) Cos entries in a table.//// Get Sin(Mpi/2^k) and Cos(Mpi/2^k) by table lookup.////// Step 5// ======// Calculate Cos(r) and Sin(r) by polynomial approximation.//// Cos(r) = 1 + r^2 q1  + r^4 q2 + r^6 q3 + ... = Series for Cos// Sin(r) = r + r^3 p1  + r^5 p2 + r^7 p3 + ... = Series for Sin//// and the coefficients q1, q2, ... and p1, p2, ... are stored in a table////// Calculate// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)//// as follows////    S[m] = Sin(Mpi/2^k) and C[m] = Cos(Mpi/2^k)//    rsq = r*r//////    P = p1 + r^2p2 + r^4p3 + r^6p4//    Q = q1 + r^2q2 + r^4q3 + r^6q4////       rcub = r * rsq//       Sin(r) = r + rcub * P//              = r + r^3p1  + r^5p2 + r^7p3 + r^9p4 + ... = Sin(r)////            The coefficients are not exactly these values, but almost.////            p1 = -1/6  = -1/3!//            p2 = 1/120 =  1/5!//            p3 = -1/5040 = -1/7!//            p4 = 1/362889 = 1/9!////       P =  r + rcub * P////    Answer = S[m] Cos(r) + [Cm] P////       Cos(r) = 1 + rsq Q//       Cos(r) = 1 + r^2 Q//       Cos(r) = 1 + r^2 (q1 + r^2q2 + r^4q3 + r^6q4)//       Cos(r) = 1 + r^2q1 + r^4q2 + r^6q3 + r^8q4 + ...////       S[m] Cos(r) = S[m](1 + rsq Q)//       S[m] Cos(r) = S[m] + Sm rsq Q//       S[m] Cos(r) = S[m] + s_rsq Q//       Q         = S[m] + s_rsq Q//// Then,////    Answer = Q + C[m] P// Registers used//==============================================================// general input registers:// r14 -> r26// r32 -> r35// predicate registers used:// p6 -> p11// floating-point registers used// f9 -> f15// f32 -> f61// Assembly macros//==============================================================sincos_NORM_f8                 = f9sincos_W                       = f10sincos_int_Nfloat              = f11sincos_Nfloat                  = f12sincos_r                       = f13sincos_rsq                     = f14sincos_rcub                    = f15sincos_save_tmp                = f15sincos_Inv_Pi_by_16            = f32sincos_Pi_by_16_1              = f33sincos_Pi_by_16_2              = f34sincos_Inv_Pi_by_64            = f35sincos_Pi_by_16_3              = f36sincos_r_exact                 = f37sincos_Sm                      = f38sincos_Cm                      = f39sincos_P1                      = f40sincos_Q1                      = f41sincos_P2                      = f42sincos_Q2                      = f43sincos_P3                      = f44sincos_Q3                      = f45sincos_P4                      = f46sincos_Q4                      = f47sincos_P_temp1                 = f48sincos_P_temp2                 = f49sincos_Q_temp1                 = f50sincos_Q_temp2                 = f51sincos_P                       = f52sincos_Q                       = f53sincos_srsq                    = f54sincos_SIG_INV_PI_BY_16_2TO61  = f55sincos_RSHF_2TO61              = f56sincos_RSHF                    = f57sincos_2TOM61                  = f58sincos_NFLOAT                  = f59sincos_W_2TO61_RSH             = f60fp_tmp                         = f61/////////////////////////////////////////////////////////////sincos_GR_sig_inv_pi_by_16     = r14sincos_GR_rshf_2to61           = r15sincos_GR_rshf                 = r16sincos_GR_exp_2tom61           = r17sincos_GR_n                    = r18sincos_GR_m                    = r19sincos_GR_32m                  = r19sincos_GR_all_ones             = r19sincos_AD_1                    = r20sincos_AD_2                    = r21sincos_exp_limit               = r22sincos_r_signexp               = r23sincos_r_17_ones               = r24sincos_r_sincos                = r25sincos_r_exp                   = r26GR_SAVE_PFS                    = r33GR_SAVE_B0                     = r34GR_SAVE_GP                     = r35GR_SAVE_r_sincos               = r36RODATA// Pi/16 parts.align 16LOCAL_OBJECT_START(double_sincos_pi)   data8 0xC90FDAA22168C234, 0x00003FFC // pi/16 1st part   data8 0xC4C6628B80DC1CD1, 0x00003FBC // pi/16 2nd part   data8 0xA4093822299F31D0, 0x00003F7A // pi/16 3rd partLOCAL_OBJECT_END(double_sincos_pi)// Coefficients for polynomialsLOCAL_OBJECT_START(double_sincos_pq_k4)   data8 0x3EC71C963717C63A // P4   data8 0x3EF9FFBA8F191AE6 // Q4   data8 0xBF2A01A00F4E11A8 // P3   data8 0xBF56C16C05AC77BF // Q3   data8 0x3F8111111110F167 // P2   data8 0x3FA555555554DD45 // Q2   data8 0xBFC5555555555555 // P1   data8 0xBFDFFFFFFFFFFFFC // Q1LOCAL_OBJECT_END(double_sincos_pq_k4)// Sincos table (S[m], C[m])LOCAL_OBJECT_START(double_sin_cos_beta_k4)data8 0x0000000000000000 , 0x00000000 // sin( 0 pi/16)  S0data8 0x8000000000000000 , 0x00003fff // cos( 0 pi/16)  C0//data8 0xc7c5c1e34d3055b3 , 0x00003ffc // sin( 1 pi/16)  S1data8 0xfb14be7fbae58157 , 0x00003ffe // cos( 1 pi/16)  C1//data8 0xc3ef1535754b168e , 0x00003ffd // sin( 2 pi/16)  S2data8 0xec835e79946a3146 , 0x00003ffe // cos( 2 pi/16)  C2//data8 0x8e39d9cd73464364 , 0x00003ffe // sin( 3 pi/16)  S3data8 0xd4db3148750d181a , 0x00003ffe // cos( 3 pi/16)  C3//data8 0xb504f333f9de6484 , 0x00003ffe // sin( 4 pi/16)  S4data8 0xb504f333f9de6484 , 0x00003ffe // cos( 4 pi/16)  C4//data8 0xd4db3148750d181a , 0x00003ffe // sin( 5 pi/16)  C3data8 0x8e39d9cd73464364 , 0x00003ffe // cos( 5 pi/16)  S3//data8 0xec835e79946a3146 , 0x00003ffe // sin( 6 pi/16)  C2data8 0xc3ef1535754b168e , 0x00003ffd // cos( 6 pi/16)  S2//data8 0xfb14be7fbae58157 , 0x00003ffe // sin( 7 pi/16)  C1data8 0xc7c5c1e34d3055b3 , 0x00003ffc // cos( 7 pi/16)  S1//data8 0x8000000000000000 , 0x00003fff // sin( 8 pi/16)  C0data8 0x0000000000000000 , 0x00000000 // cos( 8 pi/16)  S0//data8 0xfb14be7fbae58157 , 0x00003ffe // sin( 9 pi/16)  C1data8 0xc7c5c1e34d3055b3 , 0x0000bffc // cos( 9 pi/16)  -S1//data8 0xec835e79946a3146 , 0x00003ffe // sin(10 pi/16)  C2data8 0xc3ef1535754b168e , 0x0000bffd // cos(10 pi/16)  -S2//data8 0xd4db3148750d181a , 0x00003ffe // sin(11 pi/16)  C3data8 0x8e39d9cd73464364 , 0x0000bffe // cos(11 pi/16)  -S3//data8 0xb504f333f9de6484 , 0x00003ffe // sin(12 pi/16)  S4data8 0xb504f333f9de6484 , 0x0000bffe // cos(12 pi/16)  -S4//data8 0x8e39d9cd73464364 , 0x00003ffe // sin(13 pi/16) S3data8 0xd4db3148750d181a , 0x0000bffe // cos(13 pi/16) -C3//data8 0xc3ef1535754b168e , 0x00003ffd // sin(14 pi/16) S2data8 0xec835e79946a3146 , 0x0000bffe // cos(14 pi/16) -C2//data8 0xc7c5c1e34d3055b3 , 0x00003ffc // sin(15 pi/16) S1data8 0xfb14be7fbae58157 , 0x0000bffe // cos(15 pi/16) -C1//data8 0x0000000000000000 , 0x00000000 // sin(16 pi/16) S0data8 0x8000000000000000 , 0x0000bfff // cos(16 pi/16) -C0//data8 0xc7c5c1e34d3055b3 , 0x0000bffc // sin(17 pi/16) -S1data8 0xfb14be7fbae58157 , 0x0000bffe // cos(17 pi/16) -C1//data8 0xc3ef1535754b168e , 0x0000bffd // sin(18 pi/16) -S2data8 0xec835e79946a3146 , 0x0000bffe // cos(18 pi/16) -C2//data8 0x8e39d9cd73464364 , 0x0000bffe // sin(19 pi/16) -S3data8 0xd4db3148750d181a , 0x0000bffe // cos(19 pi/16) -C3//data8 0xb504f333f9de6484 , 0x0000bffe // sin(20 pi/16) -S4data8 0xb504f333f9de6484 , 0x0000bffe // cos(20 pi/16) -S4//data8 0xd4db3148750d181a , 0x0000bffe // sin(21 pi/16) -C3data8 0x8e39d9cd73464364 , 0x0000bffe // cos(21 pi/16) -S3//data8 0xec835e79946a3146 , 0x0000bffe // sin(22 pi/16) -C2data8 0xc3ef1535754b168e , 0x0000bffd // cos(22 pi/16) -S2//data8 0xfb14be7fbae58157 , 0x0000bffe // sin(23 pi/16) -C1data8 0xc7c5c1e34d3055b3 , 0x0000bffc // cos(23 pi/16) -S1//data8 0x8000000000000000 , 0x0000bfff // sin(24 pi/16) -C0data8 0x0000000000000000 , 0x00000000 // cos(24 pi/16) S0//data8 0xfb14be7fbae58157 , 0x0000bffe // sin(25 pi/16) -C1data8 0xc7c5c1e34d3055b3 , 0x00003ffc // cos(25 pi/16) S1//data8 0xec835e79946a3146 , 0x0000bffe // sin(26 pi/16) -C2data8 0xc3ef1535754b168e , 0x00003ffd // cos(26 pi/16) S2//data8 0xd4db3148750d181a , 0x0000bffe // sin(27 pi/16) -C3data8 0x8e39d9cd73464364 , 0x00003ffe // cos(27 pi/16) S3//data8 0xb504f333f9de6484 , 0x0000bffe // sin(28 pi/16) -S4data8 0xb504f333f9de6484 , 0x00003ffe // cos(28 pi/16) S4//data8 0x8e39d9cd73464364 , 0x0000bffe // sin(29 pi/16) -S3data8 0xd4db3148750d181a , 0x00003ffe // cos(29 pi/16) C3//data8 0xc3ef1535754b168e , 0x0000bffd // sin(30 pi/16) -S2data8 0xec835e79946a3146 , 0x00003ffe // cos(30 pi/16) C2//data8 0xc7c5c1e34d3055b3 , 0x0000bffc // sin(31 pi/16) -S1data8 0xfb14be7fbae58157 , 0x00003ffe // cos(31 pi/16) C1//data8 0x0000000000000000 , 0x00000000 // sin(32 pi/16) S0

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲精品少妇30p| 国产亚洲精品7777| 久久免费视频色| 亚洲欧美激情在线| 久久国产精品一区二区| 不卡欧美aaaaa| 欧美成人三级在线| 亚洲综合在线免费观看| 国产精品伊人色| 日韩一区二区免费高清| 亚洲黄色小说网站| 成人免费视频网站在线观看| 欧美大黄免费观看| 亚洲va在线va天堂| 色狠狠色噜噜噜综合网| 国产欧美一区二区在线| 精品一区二区三区久久久| 精品视频一区三区九区| 综合在线观看色| 成人国产精品免费观看| 国产日韩精品视频一区| 久久成人麻豆午夜电影| 在线播放亚洲一区| 午夜亚洲国产au精品一区二区| av福利精品导航| 国产精品欧美一区喷水| 国产激情91久久精品导航| 久久综合久久综合久久综合| 欧美日韩一区二区三区不卡| 亚洲综合色成人| 欧美午夜精品一区| 一区二区三区国产精品| 91丨porny丨在线| 亚洲视频精选在线| 91麻豆精品国产91久久久久| 国产日韩欧美亚洲| 成人免费va视频| 亚洲日本乱码在线观看| 91蜜桃网址入口| 亚洲一区二区四区蜜桃| 欧美日韩激情在线| 六月婷婷色综合| 国产亚洲欧美中文| av午夜精品一区二区三区| 亚洲黄色av一区| 在线播放中文字幕一区| 麻豆精品精品国产自在97香蕉| 欧美成人一区二区三区| 豆国产96在线|亚洲| 91性感美女视频| 青青草原综合久久大伊人精品优势| 99视频热这里只有精品免费| 国产精品国产三级国产a| 91免费小视频| 亚洲va国产天堂va久久en| 日韩美女在线视频| 国产成人久久精品77777最新版本| 欧美mv日韩mv国产网站app| 蜜乳av一区二区三区| 久久久久久**毛片大全| 91在线观看地址| 图片区小说区区亚洲影院| 欧美日韩一区二区三区四区| 午夜久久久影院| 五月天精品一区二区三区| 精品婷婷伊人一区三区三| 久久精品人人做人人爽人人| 精品一区二区三区视频在线观看| 欧美一区二区福利视频| 国产麻豆午夜三级精品| 99精品国产99久久久久久白柏| 自拍偷在线精品自拍偷无码专区| 91福利精品视频| 精品影视av免费| 亚洲手机成人高清视频| 日韩美女视频在线| 9久草视频在线视频精品| 午夜日韩在线电影| 国产午夜精品久久| 制服视频三区第一页精品| 不卡影院免费观看| 国内精品嫩模私拍在线| 亚洲一区二区三区美女| 国产欧美久久久精品影院| 欧美精品第一页| 91捆绑美女网站| 国产成人午夜视频| 日本中文字幕一区二区有限公司| 综合av第一页| 国产蜜臀av在线一区二区三区| 欧美一区二区三区思思人| 色欲综合视频天天天| 成人中文字幕合集| 国精产品一区一区三区mba桃花| 亚洲综合色自拍一区| 国产精品每日更新在线播放网址 | 亚洲成av人综合在线观看| 国产日韩欧美激情| 精品国产乱码久久久久久老虎| 欧洲一区二区av| 99re视频精品| 成人小视频免费在线观看| 免费高清在线一区| 午夜不卡av免费| 亚洲高清视频在线| 亚洲女性喷水在线观看一区| 国产欧美日韩三区| 精品久久久三级丝袜| 欧美军同video69gay| 欧美在线一区二区三区| 在线免费观看成人短视频| 91美女在线看| av在线不卡电影| 99视频精品全部免费在线| 成人福利视频在线看| 波多野结衣精品在线| 不卡av在线网| 99re在线视频这里只有精品| 99re视频精品| 欧美性猛交xxxx乱大交退制版| 色吊一区二区三区| 欧美艳星brazzers| 91官网在线免费观看| 欧美日韩一区成人| 欧美丰满美乳xxx高潮www| 欧美妇女性影城| 91精品国产91久久综合桃花| 日韩视频123| 久久久三级国产网站| 国产精品日韩精品欧美在线| 中文字幕一区二区视频| 亚洲精品视频观看| 秋霞国产午夜精品免费视频| 激情文学综合丁香| 成人免费高清在线| 欧美亚洲另类激情小说| 日韩欧美一区在线观看| 久久久久国产精品人| 欧美激情一区二区| 一区二区不卡在线视频 午夜欧美不卡在| 亚洲激情图片一区| 日av在线不卡| 国产精品综合在线视频| 91麻豆swag| 欧美一区中文字幕| 日本一区二区成人在线| 亚洲亚洲精品在线观看| 久久99精品久久久久久动态图| 国产成人av一区二区三区在线| 色欧美日韩亚洲| 精品国产伦一区二区三区免费| 中文字幕一区日韩精品欧美| 午夜精品视频一区| 国产成人免费在线观看| 精品1区2区3区| 国产欧美一区二区精品性色超碰| 亚洲欧美日韩国产综合| 老司机午夜精品| 99re8在线精品视频免费播放| 在线观看91精品国产麻豆| 国产精品视频麻豆| 日本vs亚洲vs韩国一区三区| 成人高清av在线| 精品欧美乱码久久久久久1区2区| 欧美国产日韩一二三区| 天堂成人国产精品一区| 99视频一区二区三区| 精品久久久久99| 亚洲成人资源网| www.亚洲人| 久久亚洲私人国产精品va媚药| 亚洲情趣在线观看| 懂色av一区二区三区免费看| 337p亚洲精品色噜噜噜| 中文字幕在线不卡视频| 国产成a人无v码亚洲福利| 91精品国产综合久久久久久| 亚洲精品国产高清久久伦理二区| 国产一区二区三区综合| 56国语精品自产拍在线观看| 玉足女爽爽91| 99综合电影在线视频| 国产亚洲精品aa| 国产真实乱子伦精品视频| 欧美日本高清视频在线观看| 亚洲婷婷综合色高清在线| 国产ts人妖一区二区| 91精品国产综合久久香蕉麻豆| 亚洲一区在线观看网站| 91麻豆国产在线观看| 亚洲欧洲另类国产综合| 豆国产96在线|亚洲| 国产日韩欧美制服另类| 国产成人av电影在线播放| 久久久精品蜜桃| 九一九一国产精品| 精品剧情在线观看| 激情小说亚洲一区| www亚洲一区| 国产成人无遮挡在线视频|