?? ktime.c
字號:
/*********************************************************************** * * * Copyright (c) David L. Mills 1993-2001 * * * * Permission to use, copy, modify, and distribute this software and * * its documentation for any purpose and without fee is hereby * * granted, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission * * notice appear in supporting documentation, and that the name * * University of Delaware not be used in advertising or publicity * * pertaining to distribution of the software without specific, * * written prior permission. The University of Delaware makes no * * representations about the suitability this software for any * * purpose. It is provided "as is" without express or implied * * warranty. * * * **********************************************************************/#include "kern.h"/* * Generic NTP kernel interface * * These routines constitute the Network Time Protocol (NTP) interfaces * for user and daemon application programs. The ntp_gettime() routine * provides the time, maximum error (synch distance) and estimated error * (dispersion) to client user application programs. The ntp_adjtime() * routine is used by the NTP daemon to adjust the system clock to an * externally derived time. The time offset and related variables set by * this routine are used by other routines in this module to adjust the * phase and frequency of the clock discipline loop which controls the * system clock. * * When the kernel time is reckoned directly in nanoseconds (NTP_NANO * defined), the time at each tick interrupt is derived directly from * the kernel time variable. When the kernel time is reckoned in * microseconds, (NTP_NANO undefined), the time is derived from the * kernel time variable together with a variable representing the * leftover nanoseconds at the last tick interrupt. In either case, the * current nanosecond time is reckoned from these values plus an * interpolated value derived by the clock routines in another * architecture-specific module. The interpolation can use either a * dedicated counter or a processor cycle counter (PCC) implemented in * some architectures. * * Note that all routines must run at priority splclock or higher. *//* * Phase/frequency-lock loop (PLL/FLL) definitions * * The nanosecond clock discipline uses two variable types, time * variables and frequency variables. Both types are represented as 64- * bit fixed-point quantities with the decimal point between two 32-bit * halves. On a 32-bit machine, each half is represented as a single * word and mathematical operations are done using multiple-precision * arithmetic. On a 64-bit machine, ordinary computer arithmetic is * used. * * A time variable is a signed 64-bit fixed-point number in ns and * fraction. It represents the remaining time offset to be amortized * over succeeding tick interrupts. The maximum time offset is about * 0.5 s and the resolution is about 2.3e-10 ns. * * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * |s s s| ns | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | fraction | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * * A frequency variable is a signed 64-bit fixed-point number in ns/s * and fraction. It represents the ns and fraction to be added to the * kernel time variable at each second. The maximum frequency offset is * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s. * * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * |s s s s s s s s s s s s s| ns/s | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | fraction | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ *//* * The following variables establish the state of the PLL/FLL and the * residual time and frequency offset of the local clock. */#define SHIFT_PLL 4 /* PLL loop gain (shift) */#define SHIFT_FLL 2 /* FLL loop gain (shift) */int time_state = TIME_OK; /* clock state */int time_status = STA_UNSYNC; /* clock status bits */long time_tai; /* TAI offset (s) */long time_monitor; /* last time offset scaled (ns) */long time_constant; /* poll interval (shift) (s) */long time_precision = 1; /* clock precision (ns) */long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */long time_esterror = MAXPHASE / 1000; /* estimated error (us) */long time_reftime; /* time at last adjustment (s) */long time_tick; /* nanoseconds per tick (ns) */#if !defined(NTP_NANO)long time_nano; /* nanoseconds past last tick */#endif /* NTP_NANO */l_fp time_offset; /* time offset (ns) */l_fp time_freq; /* frequency offset (ns/s) */l_fp time_adj; /* tick adjust (ns/s) */l_fp time_phase; /* time phase (ns) */#ifdef PPS_SYNC/* * The following variables are used when a pulse-per-second (PPS) signal * is available and connected via a modem control lead. They establish * the engineering parameters of the clock discipline loop when * controlled by the PPS signal. */#define PPS_FAVG 2 /* min freq avg interval (s) (shift) */#define PPS_FAVGDEF 8 /* default freq avg int (s) (shift) */#define PPS_FAVGMAX 15 /* max freq avg interval (s) (shift) */#define PPS_PAVG 4 /* phase avg interval (s) (shift) */#define PPS_VALID 120 /* PPS signal watchdog max (s) */#define PPS_MAXWANDER 100000 /* max PPS wander (ns/s) */#define PPS_POPCORN 2 /* popcorn spike threshold (shift) */struct timespec pps_tf[3]; /* phase median filter */l_fp pps_freq; /* scaled frequency offset (ns/s) */long pps_lastfreq; /* last scaled freq offset (ns/s) */long pps_fcount; /* frequency accumulator */long pps_jitter; /* nominal jitter (ns) */long pps_stabil; /* nominal stability (scaled ns/s) */long pps_lastcount; /* last counter offset */long pps_lastsec; /* time at last calibration (s) */int pps_valid; /* signal watchdog counter */int pps_shift = PPS_FAVG; /* interval duration (s) (shift) */int pps_shiftmax = PPS_FAVGDEF; /* max interval duration (s) (shift) */int pps_intcnt; /* wander counter *//* * PPS signal quality monitors */long pps_calcnt; /* calibration intervals */long pps_jitcnt; /* jitter limit exceeded */long pps_stbcnt; /* stability limit exceeded */long pps_errcnt; /* calibration errors */#endif /* PPS_SYNC *//* * End of phase/frequency-lock loop (PLL/FLL) definitions */void hardupdate();/* * ntp_gettime() - NTP user application interface * * See the timex.h header file for synopsis and API description. Note * that the TAI offset is returned in the ntvtimeval.tai structure * member. */intntp_gettime(tp) struct ntptimeval *tp; /* pointer to argument structure */{ struct ntptimeval ntv; /* temporary structure */ struct timespec atv; /* nanosecond time */ int s; /* caller priority */ s = splclock(); nano_time(&atv);#ifdef NTP_NANO ntv.time.tv_sec = atv.tv_sec; ntv.time.tv_nsec = atv.tv_nsec;#else if (!(time_status & STA_NANO)) atv.tv_nsec /= 1000; ntv.time.tv_sec = atv.tv_sec; ntv.time.tv_usec = atv.tv_nsec;#endif /* NTP_NANO */ ntv.maxerror = time_maxerror; ntv.esterror = time_esterror; ntv.tai = time_tai; splx(s); *tp = ntv; /* copy out the result structure */ /* * Status word error decode. If any of these conditions occur, * an error is returned, instead of the status word. Most * applications will care only about the fact the system clock * may not be trusted, not about the details. * * Hardware or software error */ if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) || /* * PPS signal lost when either time or frequency synchronization * requested */ (time_status & (STA_PPSFREQ | STA_PPSTIME) && !(time_status & STA_PPSSIGNAL)) || /* * PPS jitter exceeded when time synchronization requested */ (time_status & STA_PPSTIME && time_status & STA_PPSJITTER) || /* * PPS wander exceeded or calibration error when frequency * synchronization requested */ (time_status & STA_PPSFREQ && time_status & (STA_PPSWANDER | STA_PPSERROR))) return (TIME_ERROR); return (time_state);}/* * ntp_adjtime() - NTP daemon application interface * * See the timex.h header file for synopsis and API description. Note * that the timex.constant structure member has a dual purpose to set * the time constant and to set the TAI offset. */intntp_adjtime(tp) struct timex *tp; /* pointer to argument structure */{ struct timex ntv; /* temporary structure */ long freq; /* frequency ns/s) */ int modes; /* mode bits from structure */ int s; /* caller priority */ ntv = *tp; /* copy in the argument structure */ /* * Update selected clock variables - only the superuser can * change anything. Note that there is no error checking here on * the assumption the superuser should know what it is doing. * Note that either the time constant or TAI offset are loaded * from the ntv.constant member, depending on the mode bits. If * the STA_PLL bit in the status word is cleared, the state and * status words are reset to the initial values at boot. */ modes = ntv.modes; if (ROOT) return (EPERM); s = splclock(); if (modes & MOD_MAXERROR) time_maxerror = ntv.maxerror; if (modes & MOD_ESTERROR) time_esterror = ntv.esterror; if (modes & MOD_STATUS) { if (time_status & STA_PLL && !(ntv.status & STA_PLL)) { time_state = TIME_OK; time_status = STA_UNSYNC;#ifdef PPS_SYNC pps_shift = PPS_FAVG;#endif /* PPS_SYNC */ } time_status &= STA_RONLY; time_status |= ntv.status & ~STA_RONLY; } if (modes & MOD_TIMECONST) { if (ntv.constant < 0) time_constant = 0; else if (ntv.constant > MAXTC) time_constant = MAXTC; else time_constant = ntv.constant; } if (modes & MOD_TAI) { if (ntv.constant > 0) time_tai = ntv.constant; }#ifdef PPS_SYNC if (modes & MOD_PPSMAX) { if (ntv.shift < PPS_FAVG) pps_shiftmax = PPS_FAVG; else if (ntv.shift > PPS_FAVGMAX) pps_shiftmax = PPS_FAVGMAX; else pps_shiftmax = ntv.shift; }#endif /* PPS_SYNC */ if (modes & MOD_NANO) time_status |= STA_NANO; if (modes & MOD_MICRO) time_status &= ~STA_NANO; if (modes & MOD_CLKB) time_status |= STA_CLK; if (modes & MOD_CLKA) time_status &= ~STA_CLK; if (modes & MOD_OFFSET) { if (time_status & STA_NANO) hardupdate(&TIMEVAR, ntv.offset); else hardupdate(&TIMEVAR, ntv.offset * 1000); } if (modes & MOD_FREQUENCY) { freq = ntv.freq / SCALE_PPM; if (freq > MAXFREQ) L_LINT(time_freq, MAXFREQ); else if (freq < -MAXFREQ) L_LINT(time_freq, -MAXFREQ); else L_LINT(time_freq, freq);#ifdef PPS_SYNC pps_freq = time_freq;#endif /* PPS_SYNC */ } /* * Retrieve all clock variables. Note that the TAI offset is * returned only by ntp_gettime(); */ if (time_status & STA_NANO) ntv.offset = time_monitor; else ntv.offset = time_monitor / 1000; ntv.freq = L_GINT(time_freq) * SCALE_PPM; ntv.maxerror = time_maxerror; ntv.esterror = time_esterror; ntv.status = time_status; ntv.constant = time_constant; if (time_status & STA_NANO) ntv.precision = time_precision; else ntv.precision = time_precision / 1000; ntv.tolerance = MAXFREQ * SCALE_PPM;#ifdef PPS_SYNC ntv.shift = pps_shift; ntv.ppsfreq = L_GINT(pps_freq) * SCALE_PPM; if (time_status & STA_NANO) ntv.jitter = pps_jitter; else ntv.jitter = pps_jitter / 1000; ntv.stabil = pps_stabil; ntv.calcnt = pps_calcnt; ntv.errcnt = pps_errcnt; ntv.jitcnt = pps_jitcnt; ntv.stbcnt = pps_stbcnt;#endif /* PPS_SYNC */ splx(s); *tp = ntv; /* copy out the result structure */ /* * Status word error decode. See comments in * ntp_gettime() routine. */ if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) || (time_status & (STA_PPSFREQ | STA_PPSTIME) && !(time_status & STA_PPSSIGNAL)) || (time_status & STA_PPSTIME && time_status & STA_PPSJITTER) || (time_status & STA_PPSFREQ && time_status & (STA_PPSWANDER | STA_PPSERROR))) return (TIME_ERROR); return (time_state);}/* * ntp_tick_adjust() - called every tick for precision time adjustment * * This routine is ordinarily called from the tick interrupt routine * hardclock(). To minimize the jitter that might result when a higher * priority interrupt occurs after the tick interrupt is taken and * before the system clock is updated, this routine (and the following * routine second_overflow()) should be called early in the hardclock() * code path. */voidntp_tick_adjust(tvp, tick_update)#ifdef NTP_NANO struct timespec *tvp; /* pointer to nanosecond clock */ int tick_update; /* residual from adjtime() (ns) */#else struct timeval *tvp; /* pointer to microsecond clock */ int tick_update; /* residual from adjtime() (us) */#endif /* NTP_NANO */{ long ltemp, time_update; /* * Update the nanosecond and microsecond clocks. If the phase * increment exceeds the tick period, update the clock phase. */#ifdef NTP_NANO time_update = tick_update; L_ADD(time_phase, time_adj); ltemp = L_GINT(time_phase) / hz; time_update += ltemp; L_ADDHI(time_phase, -ltemp * hz); tvp->tv_nsec += time_update;#else time_update = tick_update; L_ADD(time_phase, time_adj); ltemp = L_GINT(time_phase) / (1000 * hz); time_update += ltemp; L_ADDHI(time_phase, -ltemp * (1000 * hz)); tvp->tv_usec += time_update; time_nano = L_GINT(time_phase) / hz;#endif /* NTP_NANO */}/* * second_overflow() - called after ntp_tick_adjust() * * This routine is ordinarily called immediately following the above * routine ntp_tick_adjust(). While these two routines are normally * combined, they are separated here only for the purposes of * simulation. */voidsecond_overflow(tvp)#ifdef NTP_NANO struct timespec *tvp; /* pointer to nanosecond clock */#else struct timeval *tvp; /* pointer to microsecond clock */#endif /* NTP_NANO */{ l_fp ftemp; /* 32/64-bit temporary */ /* * On rollover of the second both the nanosecond and microsecond * clocks are updated and the state machine cranked as * necessary. The phase adjustment to be used for the next * second is calculated and the maximum error is increased by * the tolerance. */#ifdef NTP_NANO if (tvp->tv_nsec >= NANOSECOND) { tvp->tv_nsec -= NANOSECOND;#else if (tvp->tv_usec >= 1000000) { tvp->tv_usec -= 1000000;
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -