亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? theory.htm

?? 內核中關于nano計時的功能
?? HTM
?? 第 1 頁 / 共 2 頁
字號:
        <br>
        Table 1. Allan Intercept
        <p>A more careful examination of the particular nanosecond kernel used for case (2) reveals an interesting and important design issue. Recent Intel chipsets have provisions for a system management interrupt (SMI), which implements the automatic power management (APM) features and monitors temperature, voltages and fans. In general, the SMI is not controllable by the BIOS and must be enabled by a specific register. The effect of the SMI on the Allan deviation is shown in Figure 2. If the SMI is enabled, the upper trace results; if disabled, the lower trace results. Obviously, the SMI has a significant affect on timekeeping performance.</p>
        <p>The result of the SMI on system timekeeping is shown in Figures 3 and 4. Figure 3 shows the phase offset with SMI disabled over a 1000 s interval, while Figure 4 shows the offset with SMI enabled over the same interval. The problem is immediately apparent as the occurrence of 50-<font face="symbol">m</font>s spikes at apparent intervals of about 250 s. The amplitude of the spikes represent the time in the SMI context. However, the actual interrupt rate cannot be directly determined, as the figure actually shows only the beat frequency against the PPS signal. There is no immediate explanation whether these spikes occur in other contexts or whether they occur with other chipsets. Apparently, some chipsets make better timekeepers than others.</p>
        <table width="100%" cols="1">
            <tr>
                <td align="center"><img src="pic/DM40_tg.gif" alt="gif"></td>
                <td align="center"><img src="pic/DM30_tg.gif" alt="gif"></td>
            </tr>
            <tr>
                <td align="center">Figure 3. Phase Offset of Normal Kernel</td>
                <td align="center">Figure 4. Phase Offset of SMI-Enabled Kernel</td>
            </tr>
        </table>
        <h4 id="#phase">Phase and Frequency Offset Characteristics</h4>
        <p>The figures below show the phase and frequency characteristic for the nanosecond kernel (case (2) Figures 5 and 6) and microsecond kernel (case (1) Figures 7 and 8). It is important to remember that the data on these plots are derived from the oscillator control signal <i>V<sub>c</sub></i> of the feedback loop. See the <a href="descrip.htm">Principles of Operation</a> page for further information. For these figures the cesium oscillator and PPS interface were used as the source for the PPS discipline. The cause of the higher wander with case (2) is readily apparent in the frequency offset characteristic of Figure 6, which is considerably more wiggly than Figure 8. In fact, there are some nasty discontinuities in Figure 6 due to extreme temperature variations during the particular experiment run. From experience, Figure 8 is more typical of workstations in temperature controlled office environments. Note also the grass in Figure 8, which is absent in Figure 6. While this does not seriously affect the phase offset, the cause is probably due the fact the microsecond kernel can resolve time values to only 1 <font face="symbol">m</font>s.</p>
        <table width="100%" cols="1">
            <tr>
                <td align="center"><img src="pic/DM41_tp.gif" alt="gif"></td>
                <td align="center"><img src="pic/DM41_fp.gif" alt="gif"></td>
            </tr>
            <tr>
                <td align="center">Figure 5. Phase Offset for Nanosecond Kernel</td>
                <td align="center">Figure 6. Frequency Offset for Nanosecond Kernel</td>
            </tr>
        </table>
        <table width="100%" cols="1">
            <tr>
                <td align="center"><img src="pic/pps1_tp.gif" alt="gif"></td>
                <td align="center"><img src="pic/pps1_fp.gif" alt="gif"></td>
            </tr>
            <tr>
                <td align="center">Figure 7. Phase Offset for Microsecond Kernel</td>
                <td align="center">Figure 8. Frequency Offset for Microsecond Kernel</td>
            </tr>
        </table>
        <p>Figures 9 and 10 show the phase and frequency offsets for the synthetic data of case (4). Here the noise levels are considerably less than the other figures and represent the ultimate performance if the various residual sources of jitter and latency can be found and removed.</p>
        <table width="100%" cols="1">
            <tr>
                <td align="center"><img src="pic/synth1_tp.gif" alt="gif"></td>
                <td align="center"><img src="pic/synth1_fp.gif" alt="gif"></td>
            </tr>
            <tr>
                <td align="center">Figure 9. Phase Offset for Synthetic Kernel</td>
                <td align="center">Figure 10. Frequency Offset for Synthetic Kernel</td>
            </tr>
        </table>
        <h4 id="#avg">The Effects of Averaging Interval</h4>
        <p>Throughout this presentation until this point, it has been assumed that the optimum performance (lowest standard error) is achieved when the averaging interval is equal to the Allan intercept. Figures 11 and 12 show the standard error for the nanosecond kernel (case 2) and microsecond kernel (case 1) as the averaging interval is varied from 4 s to 32768 s.</p>
        <table width="100%" cols="1">
            <tr>
                <td align="center"><img src="pic/DM4_p.gif" alt="gif"></td>
                <td align="center"><img src="pic/pps_p.gif" alt="gif"></td>
            </tr>
            <tr>
                <td align="center">Figure 11. Standard Error for Nanosecond Kernel</td>
                <td align="center">Figure 12. Standard Error for Microsecond Kernel</td>
            </tr>
        </table>
        <p>The lowest standard error is reached at 50 s in Figure 11 and 500 s in Figure 12. These values should be compared with the Allan intercept for each case, 50 s and 2000 s, respectively. While the Allan intercept is an accurate predictor of optimum averaging interval for the nanosecond kernel, it is less so for the microsecond kernel. On the other hand, the valley is quite broad and results in only minor increase in standard error over the range from 100 s to 5000 s. From these data a value of 128 s appears a good compromise choice.</p>
        <p>It should be noted that the PPS discipline uses the averaging interval differently for phase averaging and frequency averaging. An exponential average is used for phase discipline, while a simple average is used for frequency discipline. The weight factor used for the exponential average is the reciprocal of the averaging interval. With this design the combined effect of the two discipline loops becomes marginally stable at the lowest averaging interval of 4 s and explains why the traces shown in the figures rise so fast at the lowest end. The interval of 4 s is used only at startup and after a drastic change in system clock frequency is sensed. The discipline increases the interval after that until reaching the maintaining the interval shown on the plot.</p>
        <h4 id="#ref">References</h4>
        <ol>
            <li>Mills, D.L. Adaptive hybrid clock discipline algorithm for the Network Time Protocol. <i>IEEE/ACM Trans. Networking 6, 5</i> (October 1998), 505-514. <a href="http://www.eecis.udel.edu/~mills/database/papers/allan.ps">PostScript</a> | <a href="http://www.eecis.udel.edu/~mills/database/papers/allan.pdf">PDF</a>
        </ol>
        <hr>
        <script type="text/javascript" language="javascript" src="scripts/footer.txt"></script>
    </body>

</html>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
免费视频最近日韩| 欧美日韩国产另类一区| 日本精品裸体写真集在线观看| 欧美日韩国产一区| 国产欧美日韩视频一区二区| 一区二区三区国产精品| 国产福利一区二区三区视频| 欧美一区二区三区小说| 亚洲与欧洲av电影| 不卡视频在线观看| 欧美成人一区二区三区| 香蕉加勒比综合久久| 一本大道久久精品懂色aⅴ| 久久综合久久综合亚洲| 亚洲永久免费av| 亚洲人xxxx| 日韩和欧美的一区| 香蕉加勒比综合久久| 色呦呦网站一区| 国产精品乱人伦一区二区| 国内精品国产成人国产三级粉色 | 日韩一区欧美小说| 国产成人精品影视| 久久久亚洲欧洲日产国码αv| 日本va欧美va瓶| 91精品国产综合久久久久| 亚洲国产综合人成综合网站| 在线日韩国产精品| 亚洲国产精品一区二区www在线| 91免费精品国自产拍在线不卡| 国产午夜精品久久| 国产中文一区二区三区| 国产亚洲欧美在线| 国产老肥熟一区二区三区| 欧美精品一区二区不卡| 国产在线精品不卡| 国产日韩欧美在线一区| 国产91露脸合集magnet| 欧美激情一区二区三区不卡| 成人毛片老司机大片| 中文久久乱码一区二区| 色综合天天视频在线观看| 亚洲乱码国产乱码精品精小说 | 亚洲高清在线视频| 欧美日韩综合在线| 日韩黄色免费电影| 欧美videos中文字幕| 国产精品一区二区在线观看网站| 久久久欧美精品sm网站| 99久久精品国产精品久久| 亚洲一线二线三线久久久| 欧美剧情片在线观看| 麻豆国产精品视频| 国产日韩欧美高清| 国产午夜精品一区二区三区嫩草| 自拍视频在线观看一区二区| 亚洲福利视频一区| 日韩三级免费观看| 国产乱人伦偷精品视频不卡| 国产精品福利一区| 欧美色大人视频| 国内外成人在线视频| 国产精品久久久久久久久晋中| 色呦呦日韩精品| 另类中文字幕网| 中文字幕欧美一| 欧美日韩一区二区在线视频| 国产精品原创巨作av| 一区二区三区在线视频免费 | 51精品国自产在线| 国产精品亚洲一区二区三区在线| 国产精品你懂的在线欣赏| 欧美喷潮久久久xxxxx| 老司机午夜精品99久久| 国产精品美女www爽爽爽| 亚洲成人动漫在线观看| 天堂av在线一区| 中文字幕制服丝袜成人av| 国产综合久久久久久鬼色| 国产精品久线在线观看| 欧美日韩在线观看一区二区| 精品一区二区三区影院在线午夜| 亚洲欧美另类图片小说| 国产午夜精品美女毛片视频| 欧美人动与zoxxxx乱| 国产乱码精品1区2区3区| 亚洲欧美成aⅴ人在线观看 | 亚洲一卡二卡三卡四卡五卡| 欧美电影免费观看高清完整版在| 色先锋aa成人| 处破女av一区二区| 蜜臀91精品一区二区三区| 亚洲婷婷综合色高清在线| 久久久久国产精品厨房| 国产呦精品一区二区三区网站| 亚洲国产精品久久一线不卡| 中文乱码免费一区二区| 精品久久久久久久久久久久久久久 | 成人av免费在线| 国产一区二区三区香蕉| 麻豆精品一区二区av白丝在线| 一区二区三区在线视频观看| 国产精品水嫩水嫩| 国产视频亚洲色图| 欧美tickle裸体挠脚心vk| 欧美浪妇xxxx高跟鞋交| 在线观看区一区二| 91色.com| 91国偷自产一区二区使用方法| 成人午夜免费电影| 国产福利精品导航| 国产高清久久久久| 国产揄拍国内精品对白| 国产老妇另类xxxxx| 国产精品一区2区| 国产精品911| 成人激情综合网站| 99久久久国产精品| 99re热这里只有精品视频| 91在线视频官网| 在线日韩国产精品| 欧美在线一二三| 欧美日韩一级视频| 欧美麻豆精品久久久久久| 欧美一区二区在线视频| 欧美成人精品福利| 国产欧美日韩另类视频免费观看| 国产精品午夜久久| 一区二区三区资源| 性久久久久久久久| 精彩视频一区二区| 成人午夜电影网站| 色一情一伦一子一伦一区| 欧洲av一区二区嗯嗯嗯啊| 欧美精品一级二级| 久久一日本道色综合| 综合中文字幕亚洲| 亚洲图片有声小说| 久久国内精品视频| 成人美女在线观看| 欧美日韩久久一区| 久久综合狠狠综合| 亚洲日本va在线观看| 午夜精品福利视频网站| 久久狠狠亚洲综合| 91在线观看下载| 欧美日韩免费电影| 国产日韩欧美麻豆| 一区二区激情视频| 狠狠久久亚洲欧美| 99精品视频一区| 精品久久久久香蕉网| 亚洲三级在线免费| 久久精品国产久精国产| 99精品视频免费在线观看| 91精品国产色综合久久ai换脸| 国产亚洲一区字幕| 亚洲福利一二三区| 成人app在线| 欧美一区二区三区免费在线看| 国产精品进线69影院| 日韩高清在线观看| 色哟哟精品一区| 久久先锋资源网| 五月婷婷综合在线| av在线不卡免费看| 99精品欧美一区二区三区综合在线| 亚洲黄网站在线观看| 欧美日韩高清一区二区三区| 九色综合狠狠综合久久| 日本久久精品电影| 欧美国产精品一区二区三区| 日本va欧美va瓶| 在线观看av一区二区| 中文字幕第一区综合| 麻豆精品新av中文字幕| 欧美日韩成人一区| 亚洲中国最大av网站| 成人一区二区三区在线观看 | 亚洲色欲色欲www在线观看| 青青草国产精品97视觉盛宴| 91激情在线视频| 国产精品久久久久久久久免费相片 | 亚洲精品一二三| 99视频超级精品| 国产精品免费aⅴ片在线观看| 国产在线日韩欧美| 日韩免费电影一区| 美脚の诱脚舐め脚责91| 777a∨成人精品桃花网| 婷婷综合另类小说色区| 亚洲综合激情网| 91精品国产综合久久国产大片| 粉嫩aⅴ一区二区三区四区五区| 日韩国产欧美在线视频| 精品在线你懂的| 精品国产免费人成在线观看| 日本不卡视频在线观看| 884aa四虎影成人精品一区| 首页亚洲欧美制服丝腿|