亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? bivar.f90

?? FORTRAN程序 共有8個插值程序 希望能幫到大家
?? F90
?? 第 1 頁 / 共 5 頁
字號:
!    at the ith data point are to be stored as  the (5*i-4)th, (5*i-3)rd, 
!    (5*i-2)nd, (5*i-1)st and (5*i)th elements, respectively, where i = 
!    1, 2, ..., ndp.
!
!    Workspace, real WK(NDP).
!
  implicit none
!
  integer ndp
  integer nt
!
  real d12
  real d23
  real d31
  real dx1
  real dx2
  real dy1
  real dy2
  real dz1
  real dz2
  real dzx1
  real dzx2
  real dzy1
  real dzy2
  real, parameter :: epsln = 1.0E-06
  integer idp
  integer ipt(3*nt)
  integer ipti(3)
  integer it
  integer iv
  integer jpd
  integer jpd0
  integer jpdmx
  integer jpt
  integer jpt0
  integer nt0
  real pd(5*ndp)
  real vpx
  real vpxx
  real vpxy
  real vpy
  real vpyx
  real vpyy
  real vpz
  real vpzmn
  real w1(3)
  real w2(3)
  real wi
  real wk(ndp)
  real xd(ndp)
  real xv(3)
  real yd(ndp)
  real yv(3)
  real zd(ndp)
  real zv(3)
  real zxv(3)
  real zyv(3)
!
!  Preliminary processing.
!
  nt0 = nt
!
!  Clear the PD array.
!
  jpdmx = 5*ndp
 
  pd(1:jpdmx) = 0.0E+00
 
  wk(1:ndp) = 0.0E+00
!
!  Estimate ZX and ZY.
!
  do it = 1, nt0
 
    jpt0 = 3*(it-1)
 
    do iv = 1, 3
      jpt = jpt0+iv
      idp = ipt(jpt)
      ipti(iv) = idp
      xv(iv) = xd(idp)
      yv(iv) = yd(idp)
      zv(iv) = zd(idp)
    end do
 
    dx1 = xv(2)-xv(1)
    dy1 = yv(2)-yv(1)
    dz1 = zv(2)-zv(1)
    dx2 = xv(3)-xv(1)
    dy2 = yv(3)-yv(1)
    dz2 = zv(3)-zv(1)
    vpx = dy1*dz2-dz1*dy2
    vpy = dz1*dx2-dx1*dz2
    vpz = dx1*dy2-dy1*dx2
    vpzmn = abs(dx1*dx2+dy1*dy2)*epsln
 
    if ( abs(vpz) > vpzmn ) then
 
      d12 = sqrt((xv(2)-xv(1))**2+(yv(2)-yv(1))**2)
      d23 = sqrt((xv(3)-xv(2))**2+(yv(3)-yv(2))**2)
      d31 = sqrt((xv(1)-xv(3))**2+(yv(1)-yv(3))**2)
      w1(1) = 1.0E+00 / (d31*d12)
      w1(2) = 1.0E+00 / (d12*d23)
      w1(3) = 1.0E+00 / (d23*d31)
      w2(1) = vpz*w1(1)
      w2(2) = vpz*w1(2)
      w2(3) = vpz*w1(3)
 
      do iv = 1, 3
        idp = ipti(iv)
        jpd0 = 5*(idp-1)
        wi = (w1(iv)**2)*w2(iv)
        pd(jpd0+1) = pd(jpd0+1)+vpx*wi
        pd(jpd0+2) = pd(jpd0+2)+vpy*wi
        wk(idp) = wk(idp)+vpz*wi
      end do
 
    end if
 
  end do
 
  do idp = 1, ndp
    jpd0 = 5*(idp-1)
    pd(jpd0+1) = -pd(jpd0+1)/wk(idp)
    pd(jpd0+2) = -pd(jpd0+2)/wk(idp)
  end do
!
!  Estimate ZXX, ZXY, and ZYY.
!
  do it = 1, nt0
 
    jpt0 = 3*(it-1)
 
    do iv = 1, 3
      jpt = jpt0+iv
      idp = ipt(jpt)
      ipti(iv) = idp
      xv(iv) = xd(idp)
      yv(iv) = yd(idp)
      jpd0 = 5*(idp-1)
      zxv(iv) = pd(jpd0+1)
      zyv(iv) = pd(jpd0+2)
    end do
 
    dx1 = xv(2)-xv(1)
    dy1 = yv(2)-yv(1)
    dzx1 = zxv(2)-zxv(1)
    dzy1 = zyv(2)-zyv(1)
    dx2 = xv(3)-xv(1)
    dy2 = yv(3)-yv(1)
    dzx2 = zxv(3)-zxv(1)
    dzy2 = zyv(3)-zyv(1)
    vpxx = dy1*dzx2-dzx1*dy2
    vpxy = dzx1*dx2-dx1*dzx2
    vpyx = dy1*dzy2-dzy1*dy2
    vpyy = dzy1*dx2-dx1*dzy2
    vpz = dx1*dy2-dy1*dx2
    vpzmn = abs(dx1*dx2+dy1*dy2)*epsln
 
    if ( abs(vpz) > vpzmn ) then
 
      d12 = sqrt((xv(2)-xv(1))**2+(yv(2)-yv(1))**2)
      d23 = sqrt((xv(3)-xv(2))**2+(yv(3)-yv(2))**2)
      d31 = sqrt((xv(1)-xv(3))**2+(yv(1)-yv(3))**2)
      w1(1) = 1.0E+00 /(d31*d12)
      w1(2) = 1.0E+00 /(d12*d23)
      w1(3) = 1.0E+00 /(d23*d31)
      w2(1) = vpz*w1(1)
      w2(2) = vpz*w1(2)
      w2(3) = vpz*w1(3)
 
      do iv = 1, 3
        idp = ipti(iv)
        jpd0 = 5*(idp-1)
        wi = (w1(iv)**2)*w2(iv)
        pd(jpd0+3) = pd(jpd0+3)+vpxx*wi
        pd(jpd0+4) = pd(jpd0+4)+(vpxy+vpyx)*wi
        pd(jpd0+5) = pd(jpd0+5)+vpyy*wi
      end do
 
    end if
 
  end do
 
  do idp = 1, ndp
    jpd0 = 5*(idp-1)
    pd(jpd0+3) = -pd(jpd0+3)/wk(idp)
    pd(jpd0+4) = -pd(jpd0+4)/(2.0*wk(idp))
    pd(jpd0+5) = -pd(jpd0+5)/wk(idp)
  end do
 
  return
end
subroutine idptip ( ndp,xd, yd, zd, nt, ipt, nl, ipl, pdd, iti, xii, yii, zii )
!
!*******************************************************************************
!
!! IDPTIP performs interpolation, determining a value of Z given X and Y.
!
!
!  Modified:
!
!    19 February 2001
!
!  Parameters:
!
!    Input, integer NDP, the number of data values.
!
!    Input, real XD(NDP), YD(NDP), the X and Y coordinates of the data.
!
!    Input, real ZD(NDP), the data values.
!
!    Input, integer NT, the number of triangles.
!
!    Input, ipt = integer array of dimension 3*nt containing the
!    point numbers of the vertexes of the triangles,
!
!    Input, integer NL, the number of border line segments.
!
!    Input, integer IPL(3*NL), the point numbers of the end points of the 
!    border line segments and their respective triangle numbers,
!
!    Input, real PDD(5*NDP). the partial derivatives at the data points,
!
!    Input, integer ITI, triangle number of the triangle in which lies
!    the point for which interpolation is to be performed,
!
!    Input, real XII, YII, the X and Y coordinates of the point for which
!    interpolation is to be performed.
!
!    Output, real ZII, the interpolated Z value.
!
  implicit none
!
  integer ndp
  integer nl
  integer nt
!
  real a
  real aa
  real ab
  real ac
  real act2
  real ad
  real adbc
  real ap
  real b
  real bb
  real bc
  real bdt2
  real bp
  real c
  real cc
  real cd
  real cp
  real csuv
  real d
  real dd
  real dlt
  real dp
  real dx
  real dy
  real g1
  real g2
  real h1
  real h2
  real h3
  integer i
  integer idp
  integer il1
  integer il2
  integer ipl(3*nl)
  integer ipt(3*nt)
  integer it0
  integer iti
  integer itpv
  integer jipl
  integer jipt
  integer jpd
  integer jpdd
  integer kpd
  integer ntl
  real lu
  real lv
  real p0
  real p00
  real p01
  real p02
  real p03
  real p04
  real p05
  real p1
  real p10
  real p11
  real p12
  real p13
  real p14
  real p2
  real p20
  real p21
  real p22
  real p23
  real p3
  real p30
  real p31
  real p32
  real p4
  real p40
  real p41
  real p5
  real p50
  real pd(15)
  real pdd(5*ndp)
  real thsv
  real thus
  real thuv
  real thxu
  real u
  real v
  real x(3)
  real x0
  real xd(*)
  real xii
  real y(3)
  real y0
  real yd(*)
  real yii
  real z(3)
  real z0
  real zd(*)
  real zii
  real zu(3)
  real zuu(3)
  real zuv(3)
  real zv(3)
  real zvv(3)
!
  save /idpt/
!
  common /idpt/ itpv,x0,y0,ap,bp,cp,dp, &
                p00,p10,p20,p30,p40,p50,p01,p11,p21,p31,p41, &
                p02,p12,p22,p32,p03,p13,p23,p04,p14,p05
!
!  Preliminary processing
!
  it0 = iti
  ntl = nt+nl

  if ( it0 > ntl ) then
    il1 = it0/ntl
    il2 = it0-il1*ntl
    if(il1==il2)      go to 40
    go to 60
  end if
!
!  Calculation of ZII by interpolation.
!  Check if the necessary coefficients have been calculated.
!
  if ( it0 == itpv )     go to 30
!
!  Load coordinate and partial derivative values at the vertexes.
!
  jipt = 3*(it0-1)
  jpd = 0
 
  do i = 1, 3
 
    jipt = jipt+1
    idp = ipt(jipt)
    x(i) = xd(idp)
    y(i) = yd(idp)
    z(i) = zd(idp)
    jpdd = 5*(idp-1)
 
    do kpd = 1, 5
      jpd = jpd+1
      jpdd = jpdd+1
      pd(jpd) = pdd(jpdd)
    end do
 
  end do
!
!  Determine the coefficients for the coordinate system
!  transformation from the XY system to the UV system and vice versa.
!
  x0 = x(1)
  y0 = y(1)
  a = x(2)-x0
  b = x(3)-x0
  c = y(2)-y0
  d = y(3)-y0
  ad = a*d
  bc = b*c
  dlt = ad-bc
  ap =  d/dlt
  bp = -b/dlt
  cp = -c/dlt
  dp =  a/dlt
!
!  Convert the partial derivatives at the vertexes of the
!  triangle for the UV coordinate system.
!
  aa = a*a
  act2 = 2.0E+00 *a*c
  cc = c*c
  ab = a*b
  adbc = ad+bc
  cd = c*d
  bb = b*b
  bdt2 = 2.0E+00 *b*d
  dd = d*d
 
  do i = 1, 3
    jpd = 5*i
    zu(i) = a*pd(jpd-4)+c*pd(jpd-3)
    zv(i) = b*pd(jpd-4)+d*pd(jpd-3)
    zuu(i) = aa*pd(jpd-2)+act2*pd(jpd-1)+cc*pd(jpd)
    zuv(i) = ab*pd(jpd-2)+adbc*pd(jpd-1)+cd*pd(jpd)
    zvv(i) = bb*pd(jpd-2)+bdt2*pd(jpd-1)+dd*pd(jpd)
  end do
!
!  Calculate the coefficients of the polynomial.
!
  p00 = z(1)
  p10 = zu(1)
  p01 = zv(1)
  p20 = 0.5E+00 * zuu(1)
  p11 = zuv(1)
  p02 = 0.5E+00 * zvv(1)
  h1 = z(2)-p00-p10-p20
  h2 = zu(2)-p10-zuu(1)
  h3 = zuu(2)-zuu(1)
  p30 =  10.0E+00 * h1 - 4.0E+00 * h2 + 0.5E+00 * h3
  p40 = -15.0E+00 * h1 + 7.0E+00 * h2           - h3
  p50 =   6.0E+00 * h1 - 3.0E+00 * h2 + 0.5E+00 * h3
  h1 = z(3)-p00-p01-p02
  h2 = zv(3)-p01-zvv(1)
  h3 = zvv(3)-zvv(1)
  p03 =  10.0E+00 * h1 - 4.0E+00 * h2 + 0.5E+00 * h3
  p04 = -15.0E+00 * h1 + 7.0E+00 * h2    -h3
  p05 =   6.0E+00 * h1 - 3.0E+00 * h2 + 0.5E+00 * h3
  lu = sqrt(aa+cc)
  lv = sqrt(bb+dd)
  thxu = atan2(c,a)
  thuv = atan2(d,b)-thxu
  csuv = cos(thuv)
  p41 = 5.0E+00*lv*csuv/lu*p50
  p14 = 5.0E+00*lu*csuv/lv*p05
  h1 = zv(2)-p01-p11-p41
  h2 = zuv(2)-p11-4.0E+00 * p41
  p21 =  3.0E+00 * h1-h2
  p31 = -2.0E+00 * h1+h2
  h1 = zu(3)-p10-p11-p14
  h2 = zuv(3)-p11- 4.0E+00 * p14
  p12 =  3.0E+00 * h1-h2
  p13 = -2.0E+00 * h1+h2
  thus = atan2(d-c,b-a)-thxu
  thsv = thuv-thus
  aa =  sin(thsv)/lu
  bb = -cos(thsv)/lu
  cc =  sin(thus)/lv
  dd =  cos(thus)/lv
  ac = aa*cc
  ad = aa*dd
  bc = bb*cc
  g1 = aa * ac*(3.0E+00*bc+2.0E+00*ad)
  g2 = cc * ac*(3.0E+00*ad+2.0E+00*bc)
  h1 = -aa*aa*aa*(5.0E+00*aa*bb*p50+(4.0E+00*bc+ad)*p41) &
       -cc*cc*cc*(5.0E+00*cc*dd*p05+(4.0E+00*ad+bc)*p14)
  h2 = 0.5E+00 * zvv(2)-p02-p12
  h3 = 0.5E+00 * zuu(3)-p20-p21
  p22 = (g1*h2+g2*h3-h1)/(g1+g2)
  p32 = h2-p22
  p23 = h3-p22
  itpv = it0
!
!  Convert XII and YII to UV system.
!
30 continue

  dx = xii-x0
  dy = yii-y0
  u = ap*dx+bp*dy
  v = cp*dx+dp*dy
!
!  Evaluate the polynomial.
!
  p0 = p00+v*(p01+v*(p02+v*(p03+v*(p04+v*p05))))
  p1 = p10+v*(p11+v*(p12+v*(p13+v*p14)))
  p2 = p20+v*(p21+v*(p22+v*p23))
  p3 = p30+v*(p31+v*p32)
  p4 = p40+v*p41
  p5 = p50
  zii = p0+u*(p1+u*(p2+u*(p3+u*(p4+u*p5))))
  return
!
!  Calculation of ZII by extrapolation in the rectangle.
!  Check if the necessary coefficients have been calculated.
!
40 continue

  if(it0==itpv)     go to 50
!
!  Load coordinate and partial derivative values at the end
!  points of the border line segment.
!
  jipl = 3*(il1-1)
  jpd = 0
 
  do i = 1, 2
 
    jipl = jipl+1
    idp = ipl(jipl)
    x(i) = xd(idp)
    y(i) = yd(idp)
    z(i) = zd(idp)
    jpdd = 5*(idp-1)
 
    do kpd = 1, 5
      jpd = jpd+1
      jpdd = jpdd+1
      pd(jpd) = pdd(jpdd)
    end do
 
  end do
!
!  Determine the coefficients for the coordinate system
!  transformation from the XY system to the UV system
!  and vice versa.
!
  x0 = x(1)
  y0 = y(1)
  a = y(2)-y(1)
  b = x(2)-x(1)
  c = -b
  d = a
  ad = a*d
  bc = b*c
  dlt = ad-bc
  ap =  d/dlt
  bp = -b/dlt
  cp = -bp
  dp =  ap
!
!  Convert the partial derivatives at the end points of the
!  border line segment for the UV coordinate system.
!
  aa = a*a
  act2 = 2.0E+00 * a * c
  cc = c*c
  ab = a*b
  adbc = ad+bc
  cd = c*d
  bb = b*b
  bdt2 = 2.0E+00 * b * d
  dd = d*d
 
  do i = 1, 2
    jpd = 5*i
    zu(i) = a*pd(jpd-4)+c*pd(jpd-3)
    zv(i) = b*pd(jpd-4)+d*pd(jpd-3)
    zuu(i) = aa*pd(jpd-2)+act2*pd(jpd-1)+cc*pd(jpd)
    zuv(i) = ab*pd(jpd-2)+adbc*pd(jpd-1)+cd*pd(jpd)
    zvv(i) = bb*pd(jpd-2)+bdt2*pd(jpd-1)+dd*pd(jpd)
  end do
!
!  Calculate the coefficients of the polynomial.
!
  p00 = z(1)
  p10 = zu(1)
  p01 = zv(1)
  p20 = 0.5E+00 * zuu(1)
  p11 = zuv(1)
  p02 = 0.5E+00 * zvv(1)

  h1 = z(2)-p00-p01-p02
  h2 = zv(2)-p01-zvv(1)
  h3 = zvv(2)-zvv(1)

  p03 =  10.0E+00 * h1 - 4.0E+00*h2+0.5E+00*h3
  p04 = -15.0E+00 * h1 + 7.0E+00*h2    -h3
  p05 =   6.0E+00 * h1 - 3.0E+00*h2+0.5E+00*h3

  h1 = zu(2)-p10-p11
  h2 = zuv(2)-p11

  p12 =  3.0E+00*h1-h2
  p13 = -2.0E+00*h1+h2

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美电影免费观看高清完整版在| 丝袜美腿亚洲综合| 日韩国产精品久久| 波多野结衣一区二区三区| 欧美日韩亚洲另类| 国产精品久久久久久一区二区三区 | 国产成+人+日韩+欧美+亚洲| 欧美日韩亚洲综合在线| 亚洲天堂av老司机| 国产一区二区在线观看视频| 欧美日韩你懂的| 亚洲欧美乱综合| 国产成人精品免费| 2020国产精品久久精品美国| 天天综合色天天综合| 在线观看一区日韩| 亚洲丝袜自拍清纯另类| 国产福利一区二区三区视频| 日韩欧美中文字幕精品| 午夜私人影院久久久久| 欧美性猛交xxxxxx富婆| 亚洲人成小说网站色在线| 国产不卡在线视频| 欧美不卡在线视频| 91福利视频久久久久| 久久综合九色综合欧美98| 日韩和欧美一区二区| 欧美精品一区二| 亚洲另类在线制服丝袜| 91色porny在线视频| 国产精品免费aⅴ片在线观看| 91黄色免费看| 国产一区二区三区黄视频| 亚洲精品国产无天堂网2021| 欧美大片免费久久精品三p| 99r精品视频| 狠狠色综合播放一区二区| 亚洲视频一区在线观看| 日韩欧美综合在线| 一本色道久久综合精品竹菊| 麻豆成人91精品二区三区| 亚洲人成网站色在线观看| 精品国产露脸精彩对白| 欧美亚洲综合在线| 成人av集中营| 国产一区二区三区黄视频| 亚洲午夜激情网站| 中文字幕日韩欧美一区二区三区| 欧美一区二区三区性视频| 色偷偷久久人人79超碰人人澡| 色婷婷精品大在线视频| 国产精品国模大尺度视频| 91精品国产全国免费观看| 色婷婷综合视频在线观看| 国产一区二区h| 日本强好片久久久久久aaa| 亚洲色图第一区| 久久久久久电影| 精品免费99久久| 91精品黄色片免费大全| 在线观看亚洲成人| 色综合久久久久综合体| 成人免费电影视频| 国产乱码精品一区二区三区五月婷| 图片区日韩欧美亚洲| 丁香五精品蜜臀久久久久99网站| 日韩一区二区三区在线| 欧美日韩三级一区| 91官网在线免费观看| 91亚洲午夜精品久久久久久| 成人精品电影在线观看| 国产福利精品导航| 国产精品一区二区在线看| 国产一区免费电影| 国产一区二区视频在线| 国产一区二区看久久| 国产一区啦啦啦在线观看| 激情深爱一区二区| 国产麻豆成人传媒免费观看| 国产精品中文欧美| 国产91精品一区二区麻豆亚洲| 久久99精品国产.久久久久久| 青青草97国产精品免费观看 | 制服.丝袜.亚洲.中文.综合 | 日韩欧美不卡在线观看视频| 日韩欧美的一区| 精品欧美黑人一区二区三区| 欧美电影免费观看高清完整版| 日韩欧美电影一区| 国产亲近乱来精品视频| 国产精品五月天| 亚洲免费在线看| 亚洲高清免费视频| 日本午夜一区二区| 久久99精品久久只有精品| 国产在线麻豆精品观看| 成人激情午夜影院| 91成人免费在线| 日韩一区二区免费在线观看| 久久综合999| 亚洲乱码国产乱码精品精的特点| 亚洲午夜免费电影| 久久99精品久久久久久久久久久久| 国产91富婆露脸刺激对白| 91麻豆免费视频| 在线播放欧美女士性生活| 在线精品视频一区二区| 欧美欧美欧美欧美| 欧美精品一区在线观看| 中文字幕一区二区三区在线观看| 亚洲人成亚洲人成在线观看图片| 日韩成人精品在线| 国产成人啪免费观看软件 | 激情五月播播久久久精品| 国产精品一区2区| 色婷婷av一区二区三区之一色屋| 欧美精品 国产精品| 欧美激情中文字幕一区二区| 亚洲精品国产视频| 国产精品一区二区三区乱码 | 成人免费视频视频| 精品视频123区在线观看| 国产亚洲欧美色| 亚洲电影中文字幕在线观看| 国产麻豆成人精品| 制服视频三区第一页精品| 国产精品人妖ts系列视频| 亚洲国产欧美日韩另类综合 | 成年人国产精品| 日韩午夜激情电影| 亚洲激情自拍偷拍| 国产91精品一区二区麻豆亚洲| 欧美电影一区二区| 亚洲国产精品高清| 久久99久久99小草精品免视看| 在线视频一区二区三| 国产精品污www在线观看| 蓝色福利精品导航| 欧美三级电影在线观看| 国产精品看片你懂得| 久久成人18免费观看| 欧美肥大bbwbbw高潮| 综合色中文字幕| 国产jizzjizz一区二区| 欧美tk—视频vk| 亚洲成人在线免费| 色就色 综合激情| 国产精品久久午夜夜伦鲁鲁| 精品一区二区免费在线观看| 3d动漫精品啪啪1区2区免费| 一区二区三区欧美在线观看| 99久久er热在这里只有精品15| 久久久国产精品不卡| 老司机精品视频一区二区三区| 欧美日韩在线播放三区| 一区二区三区视频在线观看| 91老师片黄在线观看| 国产精品情趣视频| 成人深夜视频在线观看| 国产欧美一区二区三区鸳鸯浴| 久久99精品视频| 精品电影一区二区三区 | 偷拍日韩校园综合在线| 欧美伊人久久大香线蕉综合69 | 丰满放荡岳乱妇91ww| 日韩精品影音先锋| 老司机午夜精品| 久久综合色婷婷| 国产成人午夜精品影院观看视频| 欧美电影免费观看高清完整版在线观看 | 大陆成人av片| 中文字幕一区二区三区色视频| 成人国产免费视频| 国产精品久久久久影视| 一本高清dvd不卡在线观看| 亚洲欧美一区二区三区国产精品| 91视频免费播放| 亚洲一区二区欧美| 7777精品伊人久久久大香线蕉经典版下载 | 日韩av一二三| 精品国产一区二区在线观看| 国产精品一级片| 日本一二三四高清不卡| 日本高清不卡一区| 午夜精品久久久久久久久久| 日韩一区二区在线观看| 国产传媒欧美日韩成人| 欧美国产亚洲另类动漫| 色一情一乱一乱一91av| 日欧美一区二区| 久久中文娱乐网| 99久久久无码国产精品| 天使萌一区二区三区免费观看| 欧美一区二区三区在线| 国产xxx精品视频大全| 一区二区三区久久| 色老头久久综合| 91精品免费观看| 色综合久久综合中文综合网| 一区二区三区不卡视频|