?? pctorc.c
字號:
/**************************************************************************
*
* NAME
* pctorc
*
* FUNCTION
*
* Convert from lp-polynomial to reflection coefficients.
*
* BEWARE: This code does not use memory efficiently.
*
* SYNOPSIS
*
* subroutine pctorc(lpc, rc, n)
*
* formal
* data I/O
* name type type function
* -------------------------------------------------------------------
* lpc(n+1) float i Array of n+1 coefficients
* a(0)+a(1)z**(-1) + a(2)Z**(-2) +
* .... + a(n)z**(-n)
* rc(n) float i/o reflection coefficients (voiced-> +rc1)
* n int i Order of polynomial
*
***************************************************************************
*
* DESCRIPTION
*
* This routine uses the Levinson recursion to compute reflection
* coefficients from the LPC coefficients. The first LPC
* coefficient is assumed to be 1, and although it is passed
* to the routine, it is not used in the calculations.
* Note: the dimension of the internal array t limits the value
* of the maximum order.
*
* CELP's LPC predictor coefficient convention is:
* p+1 -(i-1)
* A(z) = SUM a z where a = +1.0
* i=1 i 1
*
* The sign convention used defines the first reflection coefficient
* as the normalized first autocorrelation coefficient, which results
* in positive values of rc(1) for voiced speech.
*
***************************************************************************
*
* CALLED BY
*
* autohf postfilter specdist celp intsynth
*
* CALLS
*
*
*
**************************************************************************/
#include "ccsub.h"
pctorc(lpc, rc, n)
int n;
float lpc[], rc[];
{
float t[MAXNO+1], a[MAXNO+1];
int i, j;
for (i = 0; i <= n; i++)
a[i] = lpc[i];
for (i = n; i > 1; i--)
{
rc[i-1] = -a[i];
for (j = 1; j < i; j++)
t[i-j] = (a[i-j] + rc[i-1] * a[j]) / (1.0 - rc[i-1] * rc[i-1]);
for (j = 1; j < i; j++)
a[j] = t[j];
}
rc[0] = -a[1];
}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -