?? lvq3.m
字號:
function codebook = lvq3(codebook,data,rlen,alpha,win,epsilon)%LVQ3 trains codebook with LVQ3 -algorithm%% sM = lvq3(sM,D,rlen,alpha,win,epsilon)%% sM = lvq3(sM,sD,50*length(sM.codebook),0.05,0.2,0.3);%% Input and output arguments: % sM (struct) map struct, the class information must be % present on the first column of .labels field% D (struct) data struct, the class information must% be present on the first column of .labels field% rlen (scalar) running length% alpha (scalar) learning parameter, e.g. 0.05% win (scalar) window width parameter, e.g. 0.25% epsilon (scalar) relative learning parameter, e.g. 0.3%% sM (struct) map struct, the trained codebook%% NOTE: does not take mask into account.%% For more help, try 'type lvq3', or check out online documentation.% See also LVQ1, SOM_SUPERVISED, SOM_SEQTRAIN.%%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% lvq3%% PURPOSE%% Trains codebook with the LVQ3 -algorithm (described below).%% SYNTAX%% sM = lvq3(sM, data, rlen, alpha, win, epsilon)%% DESCRIPTION%% Trains codebook with the LVQ3 -algorithm. Codebook contains a number% of vectors (mi, i=1,2,...,n) and so does data (vectors xj, j=1,2,...k).% Both vector sets are classified: vectors may have a class (classes are% set to data- or map -structure's 'labels' -field. For each xj the two % closest codebookvectors mc1 and mc2 are searched (euclidean distances% d1 and d2). xj must fall into the zone of window. That happens if:%% min(d1/d2, d2/d1) > s, where s = (1-win) / (1+win).%% If xj belongs to the same class of one of the mc1 and mc1, codebook% is updated as follows (let mc1 belong to the same class as xj):% mc1(t+1) = mc1(t) + alpha * (xj(t) - mc1(t))% mc2(t+1) = mc2(t) - alpha * (xj(t) - mc2(t))% If both mc1 and mc2 belong to the same class as xj, codebook is% updated as follows:% mc1(t+1) = mc1(t) + epsilon * alpha * (xj(t) - mc1(t))% mc2(t+1) = mc2(t) + epsilon * alpha * (xj(t) - mc2(t))% Otherwise updating is not performed.%% Argument 'rlen' tells how many times training -sequence is performed.%% Argument 'alpha' is recommended to be smaller than 0.1 and argument% 'epsilon' should be between 0.1 and 0.5.%% NOTE: does not take mask into account.%% REFERENCES%% Kohonen, T., "Self-Organizing Map", 2nd ed., Springer-Verlag, % Berlin, 1995, pp. 181-182.%% See also LVQ_PAK from http://www.cis.hut.fi/research/som_lvq_pak.shtml% % REQUIRED INPUT ARGUMENTS%% sM The data to be trained.% (struct) A map struct.%% data The data to use in training.% (struct) A data struct.%% rlen (integer) Running length of LVQ3 -algorithm.% % alpha (float) Learning rate used in training, e.g. 0.05%% win (float) Window length, e.g. 0.25% % epsilon (float) Relative learning parameter, e.g. 0.3%% OUTPUT ARGUMENTS%% sM Trained data.% (struct) A map struct.%% EXAMPLE%% lab = unique(sD.labels(:,1)); % different classes% mu = length(lab)*5; % 5 prototypes for each % sM = som_randinit(sD,'msize',[mu 1]); % initial prototypes% sM.labels = [lab;lab;lab;lab;lab]; % their classes% sM = lvq1(sM,sD,50*mu,0.05); % use LVQ1 to adjust% % the prototypes % sM = lvq3(sM,sD,50*mu,0.05,0.2,0.3); % then use LVQ3 % % SEE ALSO% % lvq1 Use LVQ1 algorithm for training.% som_supervised Train SOM using supervised training.% som_seqtrain Train SOM with sequential algorithm.% Contributed to SOM Toolbox vs2, February 2nd, 2000 by Juha Parhankangas% Copyright (c) by Juha Parhankangas% http://www.cis.hut.fi/projects/somtoolbox/% Juha Parhankangas 310100 juuso 020200NOTFOUND = 1;cod = codebook.codebook;dat = data.data;c_class = codebook.labels(:,1);d_class = data.labels(:,1);s = (1-win)/(1+win);x = size(dat,1);y = size(cod,2);c_class=class2num(c_class);d_class=class2num(d_class);ONES=ones(size(cod,1),1);for t=1:rlen fprintf('\rTraining round: %d/%d',t,rlen); tmp = NaN*ones(x,y); for j=1:x flag = 0; mj = 0; mi = 0; no_NaN=find(~isnan(dat(j,:))); di=sqrt(sum([cod(:,no_NaN) - ONES*dat(j,no_NaN)].^2,2)); [foo, ind1] = min(di); di(ind1)=Inf; [foo,ind2] = min(di); %ind2=ind2+1; if d_class(j) & d_class(j)==c_class(ind1) mj = ind1; mi = ind2; if d_class(j)==c_class(ind2) flag = 1; end elseif d_class(j) & d_class(j)==c_class(ind2) mj = ind2; mi = ind1; if d_class(j)==c_class(ind1) flag = 1; end end if mj & mi if flag tmp([mj mi],:) = cod([mj mi],:) + epsilon*alpha*... (dat([j j],:) - cod([mj mi],:)); else tmp(mj,:) = cod(mj,:) + alpha * (dat(j,:)-cod(mj,:)); tmp(mi,:) = cod(mi,:) - alpha * (dat(j,:)-cod(mj,:)); end end end inds = find(~isnan(sum(tmp,2))); cod(inds,:) = tmp(inds,:);endfprintf(1,'\n');sTrain = som_set('som_train','algorithm','lvq3',... 'data_name',data.name,... 'neigh','',... 'mask',ones(y,1),... 'radius_ini',NaN,... 'radius_fin',NaN,... 'alpha_ini',alpha,... 'alpha_type','constant',... 'trainlen',rlen,... 'time',datestr(now,0));codebook.trainhist(end+1) = sTrain;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function nos = class2num(class)names = {};nos = zeros(length(class),1);for i=1:length(class) if ~isempty(class{i}) & ~any(strcmp(class{i},names)) names=cat(1,names,class(i)); endendtmp_nos = (1:length(names))';for i=1:length(class) if ~isempty(class{i}) nos(i,1) = find(strcmp(class{i},names)); endend
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -