亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲(chóng)蟲(chóng)下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲(chóng)蟲(chóng)下載站

?? kindyn-doc.sgml

?? 機(jī)器人開(kāi)源項(xiàng)目orocos的源代碼
?? SGML
?? 第 1 頁(yè) / 共 5 頁(yè)
字號(hào):
 </term> <listitem>  <para>  idem, for (instantaneous) damping value.  </para> </listitem> </varlistentry> <varlistentry> <term>  <anchor id="joint-vector-inverse-damping">  <parameter>JointInverseDamping</parameter>:  </term> <listitem>  <para>  idem, for (instantaneous) inverse damping value.  </para> </listitem> </varlistentry> <varlistentry> <term>  <anchor id="joint-vector-inertis">  <parameter>JointInertia</parameter>:  </term> <listitem>  <para>  idem, for (instantaneous) inertia value.  </para> </listitem> </varlistentry> <varlistentry> <term>  <anchor id="joint-vector-mobility">  <parameter>JointMobility</parameter>,   <parameter>JointInverseInertia</parameter>:  </term> <listitem>  <para>  idem, for (instantaneous) mobility (= inverse inertia) value.  </para> </listitem> </varlistentry></variablelist><variablelist><title>Kinematic chain dynamics</title> <varlistentry> <term>  <anchor id="chain-inertia-matrix">  <parameter>ChainInertiaMatrix</parameter>: </term> <listitem>  <para>  This is a square matrix, with a dimension equal to the number of(actuated) joints in the kinematic chain. The matrix represents theinertia of the total chain, as felt by each joint; i.e., element<parameter>i,j</parameter> of the matrix is the force needed at joint<parameter>i</parameter> to give joint <parameter>j</parameter> a unitacceleration. (The exact meaning of a &rdquo;unit acceleration&rdquo;depends on the physical units used for motion and inertia!)  </para> </listitem> </varlistentry> <varlistentry> <term>  <anchor id="chain-damping-matrix">  <parameter>ChainDampingMatrix</parameter>: </term> <listitem>  <para>  Idem, for damping.  </para> </listitem> </varlistentry> <varlistentry> <term>  <anchor id="chain-stiffness-matrix">  <parameter>ChainStiffnessMatrix</parameter>: </term> <listitem>  <para>Idem, for stiffness.  </para> </listitem> </varlistentry> <varlistentry> <term>  <anchor id="chain-jacobian-matrix">  <parameter>JacobianMatrix</parameter>: </term> <listitem>  <para>The 6 &times; N matrix that maps the N-dimensional coordinate vectorof joint velocities into one 6-dimensional end-effector<link linkend="rigid-body-twist">twist</link>. Hence, the physicalinterpration of each <emphasis>column</emphasis> of the Jacobian matrix isas follows: the i-th column is the end-effector twist generated by applyinga unit joint velocity to the i-th joint and zero velocities to all otherjoints.  </para> </listitem> </varlistentry></variablelist><variablelist><title>Control classes</title> <varlistentry> <term>  <anchor id="joint-vector-control-gains">  <parameter>JointControlGain</parameter>: </term> <listitem>  <para><emphasis>vector</emphasis> with scalar control gains,<emphasis>i.e.</emphasis> for a SISO system that has one control loop for each joint, independently of the other joints.  </para> </listitem> </varlistentry> <varlistentry> <term>  <anchor id="chain-control-gains">  <parameter>ChainControlGain</parameter>: </term> <listitem>  <para><emphasis>matrix</emphasis> of control gains, <emphasis>i.e.</emphasis> fora MIMO system, in which the gains introduce coupling between the differentjoints in the chain.  </para> </listitem> </varlistentry></variablelist></section><section id="joint-physical-methods"><title>Physical methods</title><para>All the above-described entities are often mistaken for&ldquo;vectors&rdquo;. However, they are not really members of a linearvector space, but just an <emphasis>ordered collection</emphasis> of 1Dscalars. In addition, all the scalars in a coordinate vector need not havethe same physical units.</para><para>So, it is erroneous to provide method calls that would perform<emphasis>geometric</emphasis> vector space operations. Forexample, it is meaningless to take the &ldquo;vector in-product&rdquo; oftwo <parameter>JointForce</parameter>, or look for the&ldquo;vector&rdquo; that is &ldquo;orthogonal&rdquo; to a joint velocityvector. The list of physically meaningful joint space method calls israther short:<variablelist><title>Physical properties</title> <varlistentry> <term>  <parameter>Add</parameter>: </term>  <listitem>   <para>   two joint vectors (or joint-space matrices) of the same type can be added.   </para>  </listitem> </varlistentry> <varlistentry> <term>  <parameter>Set</parameter>: </term>  <listitem>   <para>the values of a joint vector (or a joint-space matrix) can be set to aspecific value.    </para>  </listitem> </varlistentry> <varlistentry> <term>  <parameter>Get</parameter>: </term>  <listitem>   <para>read the values of a joint vector (or a joint-space matrix).    </para>  </listitem> </varlistentry> <varlistentry> <term>  <parameter>Scale</parameter>: </term>  <listitem>   <para>every joint vector (or joint-space matrix) can be scaled by aphysically dimenionless scalar. Transformation with physicallynon-dimensionless scalars has only physical meaning when the transformationis done via the above-mentioned joint space or kinematic chain dynamics.   </para>  </listitem> </varlistentry></variablelist></para></section></section><section id="motor-space"><title>Motors and transmissions</title><para>The (actuated) joints of a robotic device are connected to motors,often via a <emphasis role="strong">transmission</emphasis> that canhave non-ideal dynamical properties.  Hence, the discussion for the<link linkend="joint-space">joints</link> can be completelyrepeated for the <emphasis role="strong">motor</emphasis> and<emphasis role="strong">transmission</emphasis> classes.</para><para>In addition, extra <parameter>JointToMotorTransmission</parameter> and<parameter>MotorToJointTransmission</parameter> classes are needed, todescribe the transmission properties of the transmission between eachset of motor and joint axis. These are often constant floatingpoint numbers, but the <parameter>Set&hellip;</parameter> and<parameter>Get&hellip;</parameter> methods could need more involvedcalculations. For example, when the mapping between motors andjoints is not one-to-one, or when the transmission is non-ideal.</para></section><section id="points-rigid-bodies-frames"><title>Points, rigid bodies and frames</title><para>This section describes the properties of the static anddynamic relationships between &ldquo;motion&rdquo; and force, forpoint masses as well as for rigid bodies. This text uses the term &ldquo;motion&rdquo; as a common shorthand for <emphasis role="strong">displacement</emphasis> andits two derivatives <emphasis role="strong">velocity</emphasis> and <emphasis role="strong">acceleration</emphasis>.When needed, it's straightforward to incorporate<emphasis role="strong">small displacements</emphasis> (which have thesame properties as velocities, but other physical units) orhigher derivatives such as <emphasis>jerk</emphasis>.</para><para>The properties of the motion of<emphasis role="strong">reference frames</emphasis> are completely thesame as the motion properties of rigid bodies; therefore, they aretreated in the same Section. A rigid body has some extra properties,in the form of its <emphasis role="strong">dynamics</emphasis>.</para><para>This Section also regularly gives multiple names to the same softwareclasses; the reason is that all these names are used for thesame properties in different application contexts.</para><section id="point-mass"><title>Point mass</title><para><variablelist><title>Numeric coordinate representation:</title> <varlistentry> <term>  <anchor id="point-mass-mass">  <parameter>mass</parameter>: </term>  <listitem>   <para> floating point number.   </para>  </listitem> </varlistentry> <varlistentry> <term>  <anchor id="point-position">  <parameter>PointPosition</parameter>,   <anchor id="point-velocity">  <parameter>PointVelocity</parameter>,    <anchor id="point-acceleration">  <parameter>PointAcceleration</parameter>,  <anchor id="point-force">  <parameter>PointForce</parameter>. </term>  <listitem>   <para>These are all point vectors, connected to the moving point mass.The point vector <emphasis>are</emphasis> real physicalvectors (<emphasis>i.e.</emphasis> members of a vector space), in contrastto the joint-space coordinate &ldquo;vector;&rdquo;.   </para>  </listitem> </varlistentry></variablelist><variablelist><title>Physical properties:</title> <varlistentry> <term>  <anchor id="point-mass-add-velocity">  <parameter>add</parameter>,  <parameter>set</parameter>,  <parameter>get</parameter>,  <parameter>scale</parameter>: </term>  <listitem>   <para>   straightforward.   </para>  </listitem> </varlistentry></variablelist><variablelist><title>Symbolic properties:</title> <varlistentry> <term>  <anchor id="point-mass-dimension">  <parameter>dimension</parameter>: </term>  <listitem>   <para>  1D, 2D, 3D.   </para>  </listitem> </varlistentry> <varlistentry> <term>  <anchor id="point-mass-units">  <parameter>PointPhysicalUnits</parameter>: </term>  <listitem>   <para>  gram, kilogram, meters/seconds, Newton, etc., depending on the typeof point vector. Note that all components in a point vector do have thesame physical units.   </para>  </listitem> </varlistentry></variablelist></para></section><section id="rigid-body-frame"><title>Rigid body&mdash;Reference frame</title><para>Most of the properties in this Section are common to rigid bodies andreference frames; therefore, terminology of both contexts appears. Arigid body has some extra properties, in the form of its<emphasis>dynamics</emphasis>.<variablelist><title>Numeric coordinate representations:</title> <varlistentry> <term>  <anchor id="rigid-body-mass">  <parameter>RigidBodyMass</parameter>: </term>  <listitem>   <para>   the total mass of a rigid body.   </para>  </listitem> </varlistentry> <varlistentry> <term>  <anchor id="rigid-body-pose">  <parameter>RigidBodyPose, RigidBodyPosition, BodyPose, Pose</parameter>: </term>  <listitem>   <para>   the rigid body's position and orientation, with respect to a&ldquo;world&rdquo; frame. This pose is defined by choosing a<link linkend="rigid-body-reference-frame">RigidBodyReferenceFrame</link>on the rigid body, and taking that frame's position and orientation. Thechoice of this frame is arbitrary, and each of the following coordinateentities has only meaning with respect to one well-defined frame.   </para>  </listitem> </varlistentry> <varlistentry> <term>  <anchor id="rigid-body-mass-matrix">  <parameter>MassMatrix</parameter>, <parameter>InertiaMatrix</parameter>: </term>  <listitem>   <para>the rigid body's inertia matrix, expressed in a known<link linkend="rigid-body-reference-frame">RigidBodyReferenceFrame</link>fixed to the rigid body.    </para>   <para>The dimensions of the matrix are<parameter>N</parameter>-by-<parameter>N</parameter>, where<parameter>N</parameter> is the <link linkend="rigid-body-dimension">dimension</link> of the space the rigidbody lives in; that is, 1, 2 or 3.   </para>  </listitem> </varlistentry> <varlistentry> <term>  <anchor id="rigid-body-twist">  <parameter> Twist, RigidBodyVelocity, FrameVelocity</parameter>: </term>  <listitem>

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产一区二区h| 91视频你懂的| 亚洲视频在线观看一区| 91精品国产欧美一区二区18| 国产在线精品不卡| 一区二区成人在线观看| 欧美精品一区二区蜜臀亚洲| 欧美怡红院视频| 高清在线成人网| 久久99九九99精品| 亚洲成人高清在线| 亚洲欧美日韩国产中文在线| 久久久青草青青国产亚洲免观| 欧美日韩美少妇| 99精品视频在线播放观看| 极品瑜伽女神91| 秋霞电影网一区二区| 亚洲一区视频在线| 最新国产成人在线观看| 国产欧美一区二区三区在线老狼 | 日韩免费在线观看| 欧美视频一区二区在线观看| 99久久99久久精品免费观看 | 美女www一区二区| 亚洲狠狠爱一区二区三区| 日韩一区在线免费观看| 国产午夜精品一区二区三区嫩草 | 天天综合网 天天综合色| |精品福利一区二区三区| 欧美激情综合网| 国产色综合久久| 精品国产区一区| 精品福利一二区| 日韩精品一区二区在线| 678五月天丁香亚洲综合网| 欧美性色黄大片| 日本道免费精品一区二区三区| 99久久久久久99| 91啪九色porn原创视频在线观看| 成人av先锋影音| 99视频在线精品| av成人免费在线| 99这里只有久久精品视频| 成人av影视在线观看| 99久久精品免费看| 91美女在线视频| 欧美在线视频你懂得| 欧美日韩精品系列| 日韩一级大片在线| 精品久久久久一区二区国产| 亚洲精品一区二区三区福利 | 久久亚洲综合av| 国产午夜精品福利| 中文字幕中文字幕一区二区| 亚洲人亚洲人成电影网站色| 亚洲综合在线五月| 婷婷中文字幕综合| 国产综合色精品一区二区三区| 国产成a人亚洲精| 91首页免费视频| 欧美老人xxxx18| 欧美成人a视频| 国产精品护士白丝一区av| 亚洲激情在线激情| 日韩一区精品视频| 国产精品99久久久久久宅男| 成人动漫一区二区三区| 欧美网站一区二区| 精品免费日韩av| 亚洲色图一区二区| 日韩vs国产vs欧美| 粉嫩av一区二区三区粉嫩| 一本色道a无线码一区v| 欧美一级国产精品| 国产精品久久久久影院| 视频在线观看一区| 丁香天五香天堂综合| 欧美在线播放高清精品| 亚洲精品在线免费观看视频| 一区在线播放视频| 狂野欧美性猛交blacked| 高清不卡一二三区| 777色狠狠一区二区三区| 亚洲国产成人私人影院tom| 亚洲高清中文字幕| 国产a精品视频| 欧美日韩黄色一区二区| 日本一区二区久久| 日韩高清不卡一区| 91在线观看污| 精品国产一区二区亚洲人成毛片 | 日韩精品一区二区在线观看| 国产精品久久久久久久久快鸭| 天天色天天操综合| 成人app软件下载大全免费| 91精品国产乱| 亚洲黄色尤物视频| 国产成a人亚洲精| 91精品国产免费| 樱花影视一区二区| 成人免费毛片高清视频| 日韩一级成人av| 亚洲国产cao| 91麻豆swag| 国产女同互慰高潮91漫画| 美国欧美日韩国产在线播放| 一本一道波多野结衣一区二区| 久久香蕉国产线看观看99| 视频一区二区不卡| 色乱码一区二区三区88| 中文在线资源观看网站视频免费不卡 | 精品欧美一区二区久久| 亚洲综合偷拍欧美一区色| 成人一区在线观看| 精品少妇一区二区三区视频免付费 | 免费久久精品视频| 欧美最猛黑人xxxxx猛交| 中文字幕在线一区| 国产1区2区3区精品美女| 久久这里都是精品| 久久国产婷婷国产香蕉| 欧美色精品天天在线观看视频| 最好看的中文字幕久久| 国产999精品久久久久久| 精品第一国产综合精品aⅴ| 免费av网站大全久久| 在线不卡中文字幕| 性做久久久久久| 欧美日韩一区中文字幕| 亚洲自拍偷拍麻豆| 欧美唯美清纯偷拍| 亚洲一区二区三区小说| 在线影院国内精品| 一区二区三区在线观看网站| 日本丶国产丶欧美色综合| 亚洲精品免费电影| 在线视频综合导航| 一区二区三区在线高清| 在线精品视频一区二区| 一区二区三区久久| 欧美午夜不卡视频| 日韩精品一二区| 欧美成人aa大片| 国产精品1区2区3区| 国产精品超碰97尤物18| 日本韩国精品一区二区在线观看| 亚洲综合999| 日韩欧美中文字幕公布| 国产精品一区二区视频| 欧美国产一区二区在线观看| 不卡av免费在线观看| 亚洲九九爱视频| 欧美日韩激情一区| 久久99精品久久久久久| 国产亚洲午夜高清国产拍精品| 粉嫩av亚洲一区二区图片| 中文字幕一区二区三| 欧美天堂亚洲电影院在线播放| 天堂av在线一区| 久久先锋影音av| 99国产精品一区| 日韩精品1区2区3区| 精品剧情v国产在线观看在线| 成人综合在线网站| 亚洲伊人色欲综合网| 制服丝袜中文字幕亚洲| 国产福利一区在线观看| 一区二区三区蜜桃网| 日韩一区二区电影| 成人激情免费视频| 午夜精品久久久久久不卡8050| 久久尤物电影视频在线观看| av亚洲精华国产精华精| 日韩**一区毛片| 国产精品短视频| 91精品国产免费| av电影在线观看不卡| 免费av成人在线| 亚洲人被黑人高潮完整版| 日韩午夜在线观看视频| 国产99精品国产| 日本午夜精品一区二区三区电影| 国产欧美日韩精品a在线观看| 欧美性生活久久| 成人国产精品免费观看动漫 | 蜜臀av在线播放一区二区三区| 亚洲国产精品99久久久久久久久| 欧美色大人视频| 国产91精品一区二区麻豆网站 | 成人高清伦理免费影院在线观看| 日韩在线一区二区三区| 中文字幕一区二区在线观看| 日韩午夜电影在线观看| 一本大道久久精品懂色aⅴ| 国产在线播精品第三| 亚洲成人av资源| 亚洲区小说区图片区qvod| 久久久久久综合| 91精品国产综合久久蜜臀 | 欧美日韩中文字幕一区二区|