亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? kindyn-doc.sgml

?? 機器人開源項目orocos的源代碼
?? SGML
?? 第 1 頁 / 共 5 頁
字號:
<imagedata fileref="../opc-link-joint.eps" format="EPS"></imageobject><caption> <para>The rounded rectangles are Objects, the circles are Ports, and the ovalsare Connectors. </para></caption></mediaobject></figure></para><para>In the most general serial architecture, the joints can be anywhere oneach rigid body link, and of any type.<xref linkend="fig-opc-link-joint">depicts a serial kinematic chain with two<emphasis>Connectors</emphasis> (&ldquo;joints&rdquo;)and three <emphasis>Objects</emphasis> (&ldquo;links&rdquo;).The rounded rectangles represent the &ldquo;Objects&rdquo; in the <ulink url="decoupling.html">Object-Port-Connector</ulink>pattern; in the case of kinematic chains, the Objects are rigid bodylinks. The small circles in the Objects are the &ldquo;Ports&rdquo;,i.e., the the link's attachement points for a kinematic joint. And thelarge ovals are the &ldquo;Connectors&rdquo;, i.e., the kinematicjoints.</para></section><section id="chain-symbolic-properties"><title>Symbolic properties</title><para><variablelist> <varlistentry> <term>  <anchor id="get-configuration">  <parameter>GetConfiguration</parameter>: </term>  <listitem>   <para>Most of the <link linkend="architectures">kinematic families</link> havearchitecture-specific <emphasis>configurations</emphasis>, andcorresponding symbolic configuration names.This method call returns the name of the current configuration.   </para>  </listitem> </varlistentry> <varlistentry> <term>  <anchor id="is-singular">  <parameter>IsSingular (SingularityThreshold)</parameter>:  </term>  <listitem>   <para>A chain is singular in a configuration where it looses one or more ofits degrees of freedom. This method call returns &ldquo;yes&rdquo; or&ldquo;no&rdquo;, depending on whether the floating pointscalar that indicates the &ldquo;closeness&rdquo; to such asingularity is smaller or larger than the given threshold.It can be proven that there is, in general, no uniquedistance function with which to determine this scalar unambiguously.So, this method call can take an extra argument that indicates whichmetric to use. In the case of a component interface, this metric is set bymeans of the component's<ulink url="deeo-shallow-api.html#DATA-EXECUTION-CONFIGURATION">configurationflow</ulink>.   </para>  </listitem> </varlistentry> <varlistentry> <term>  <anchor id="is-reachable">  <parameter>IsReachable</parameter>:  </term>  <listitem>   <para>the input of this method call is a desired Cartesian or joint spaceposition, and the method calls return whether or not this position canbe reached with the chain.   </para>   <para>It is straightforward to extend the &ldquo;reachability&rdquo; tovelocities, accelerations and forces.   </para>  </listitem> </varlistentry></variablelist></para></section><section id="joint2cartesian"><title>Transformations between joint-space and Cartesian-space </title><para>This Section documents the method calls for kinematic chains, thattransform motion properties from joint space to Cartesian space, and viceversa.The following paragraphs give the API withoutdiscrimination of the chain topology.</para><variablelist><title>Kinematics transformations</title> <varlistentry> <term>  <anchor id="forward-pose">  <parameter>JointToCartesianPosition (JointPosition, Pose)</parameter>:  </term>  <listitem>   <para>(Alternative name: <parameter>JointToPose()</parameter>.)   </para>   <para>Input: <parameter>JointPosition</parameter>,position of all joints.   </para>   <para>Output: <parameter>Pose</parameter>, position andorientation of the Cartesian frame.   </para>  </listitem> </varlistentry> <varlistentry> <term>  <anchor id="inverse-pose">  <parameter>CartesianToJointPosition (Pose, JointPosition)</parameter>:  </term>  <listitem>   <para>(Alternative name: <parameter>PoseToJoint()</parameter>.)   </para>   <para>Input: <parameter>Pose</parameter>,position and orientation of the Cartesian frame.   </para>   <para>Output: <parameter>JointPosition</parameter>,position of all joints.   </para>  </listitem> </varlistentry> <varlistentry> <term>  <anchor id="forward-twist">  <parameter>JointToCartesianVelocity (JointPosition, JointVelocity, Pose,Twist)</parameter>:  </term>  <listitem>   <para>(Alternative name: <parameter>JointToTwist()</parameter>.)   </para>   <para>Input: position and velocity of all joints.   </para>   <para>Output: position and orientation of the Cartesianframe(<parameter>Pose</parameter>), and its instantaneous Cartesianvelocity (<parameter>Twist</parameter>).   </para>  </listitem>  </varlistentry> <varlistentry> <term>  <anchor id="inverse-twist">  <parameter>CartesianToJointVelocity(JointPosition, Twist, JointVelocity)</parameter>:  </term>  <listitem>   <para>(Alternative name: <parameter>TwistToJoint()</parameter>.    </para>   <para>Input: position the all joints, and the chain's instantaneous Cartesianvelocity.   </para>   <para>Output: velocity of all joints.   </para>  </listitem> </varlistentry> <varlistentry> <term>  <anchor id="jacobian">  <parameter>JointToCartesianJacobian (JointPosition, JacobianMatrix)</parameter>: </term>  <listitem>   <para>(Alternative names: <parameter>JacobianMatrix()</parameter>,<parameter>Jacobian()</parameter>.)   </para>   <para>Input: position of all joints. (Alternatively, theCartesian pose of the end-point.)   </para>   <para>Output: the <link linkend="chain-jacobian-matrix">Jacobian matrix</link>.   </para>  </listitem> </varlistentry> <varlistentry> <term>  <anchor id="forward-acceleration-twist">  <parameter>JointToCartesianAcceleration(JointPosition, JointVelocity,JointAcceleration, Pose, Twist, AccelerationTwist)</parameter>:  </term>  <listitem>   <para>Input: position, velocity and acceleration of all joints.   </para>   <para>Output: position and orientation of the Cartesian frame, and itsinstantaneous Cartesian velocity and acceleration.   </para>  </listitem> </varlistentry> <varlistentry> <term>  <anchor id="inverse-acceleration-twist">  <parameter>CartesianToJointAcceleration(JointPosition, JointVelocity,AccelerationTwist, JointAcceleration)</parameter>:  </term>  <listitem>   <para>Input:position and velocity of the joint, and the instantaneous Cartesian acceleration twist.   </para>   <para>Output: the acceleration of all joints.   </para>  </listitem> </varlistentry></variablelist><variablelist><title>Dynamics transformations</title> <varlistentry> <term>  <anchor id="joint-force-to-joint-acceleration">  <parameter>JointForceToJointAcceleration (JointPosition, JointVelocity,JointForce, JointAcceleration)</parameter>:  </term>  <listitem>   <para>Input: position and velocity of all joints, andthe forces applied at those joints.   </para>   <para>Output: the acceleration of all joints.   </para>   <para>(This transformation (as well as all the following transformations) requiresthe knowledge of the joint space<link linkend="chain-inertia-matrix">inertia matrix</link>.)   </para>  </listitem> </varlistentry> <varlistentry> <term>  <anchor id="forward-dynamics">  <parameter>JointForceToCartesianAcceleration (JointPosition, JointVelocity,JointForce, AccelerationTwist)</parameter>:  </term>  <listitem>   <para>(Alternative names:<parameter>JointForceToAccelerationTwist</parameter>,<parameter>ForwardDynamics()</parameter>.)   </para>   <para>Input: position and velocity of all joints, andthe forces applied at those joints.   </para>   <para>Output: the acceleration of the Cartesian end-effector frame.   </para>  </listitem> </varlistentry> <varlistentry> <term>  <anchor id="inverse-dynamics">  <parameter>CartesianAccelerationToJointForce (JointPosition, JointVelocity, AccelerationTwist, JointForce)</parameter>:  </term>  <listitem>   <para>(Alternative names: <parameter>TwistAccelerationToJointForce()</parameter>,<parameter>InverseDynamics()</parameter>.)   </para>   <para>Input:position and velocity of all joints, andthe desired acceleration of the Cartesian reference frame.   </para>   <para>Output: the forces to be applied at the joints in order to realize the desiredacceleration.   </para>  </listitem> </varlistentry></variablelist><variablelist><title>Cartesian properties</title> <varlistentry> <term>  <anchor id="cartesian-dynamics">  <parameter>CartesianInertia</parameter>,   <parameter>CartesianDamping</parameter>,   <parameter>CartesianStiffness</parameter>,   <parameter>CartesianCompliance</parameter>,   <parameter>CartesianInverseInertia</parameter>,   <parameter>CartesianInverseDamping</parameter>:  </term>  <listitem>   <para>every kinematic chain is <emphasis>instantaneously</emphasis>equivalent to a single rigid body, in the sense that its dynamicproperties cannot be distinguished from these of rigid body, as seen fromany of the chain's end-effector Ports.So, the above-mentioned method calls give the dynamic properties(inertia, etc.) that are instantaneously felt at a CartesianPort; this Port is given as an argument, if the chain has more than oneend-effector.</para><para>These properties are in general (highly non-linear) functions ofthe joint positions of the chain.</para>  </listitem> </varlistentry></variablelist></section><section id="redundancy-constraints"><title>Redundancy and constraints</title><para>For most <emphasis>serial</emphasis> devices, the &ldquo;inverse&rdquo;transformations (<emphasis>i.e.</emphasis> from Cartesian space to jointspace) are not uniquely defined: if the chain has less than sixactuated joints, it cannot generate any arbitrary<parameter>Twist</parameter>; if the chain has more than six actuatedjoints, it can generate the same <parameter>Twist</parameter> with amultitude of joint velocities. In addition, the chain can have physicalconstraints, or a set of non-actuated joints, that make the transformationimpossible.</para><para>For devices with a <emphasis>parallel</emphasis> chain topology, the&ldquo;inverse&rdquo; transformations are simple, and the difficulties liewith the &ldquo;forward&rdquo; transformations. For devices with a<emphasis>hybrid</emphasis> topology, the situation is more complicated inboth directions. However, the same conceptual problems and solutions applyto all chain topologies.</para><para>So, the general reasons for the non-uniqueness in the transformationsbetween joint space and Cartesian space are:<itemizedlist><listitem><para><emphasis role="strong">Redundancy</emphasis>: multiple solutions canexist (<emphasis>i.e.</emphasis> the various<emphasis>configurations</emphasis> of the kinematic chain), but evenin one single configuration, the same Cartesian position (or velocity,acceleration) can be produced by more than one joint position.</para></listitem><listitem><para><emphasis role="strong">Constraints</emphasis>: the specifiedCartesian position (velocity, acceleration) cannot bereached, because the kinematic chain has physical constraints: jointlimits, out of reach, contacts with objects in the environment, etc.</para></listitem></itemizedlist>Algorithms for both situations often rely on<emphasis>optimization criteria</emphasis> to find a solution. In thecase of redundancy, each joint receives a certain &ldquo;weight&rdquo;and the solution algorithm selects the solution with the minimaloverall &ldquo;cost&rdquo;. In the case of constraints, the violationof a given constraint also is given a specified cost, and, again, thesolution with the minimum cost is selected.</para><para>The method calls to determine what optimization criteria to use belong tothe<ulink url="deep-shallow-api.html#DATA-EXECUTION-CONFIGURATION">configurationflow</ulink>of a motion application.</para></section><section id="closed-form-numeric-algorithms"><title>Closed-form and numeric algorithms</title><para>Some <link linkend="architectures">kinematic families</link> have<emphasis>closed-form</emphasis> (&ldquo;analytical&rdquo;) algorithmsto calculate the Cartesian to joint space transformations, but forothers only <emphasis>iterative, numeric</emphasis> algorithms areavailable. In the latter case, solving the kinematics is in fact thesame problem as the generation of the (local) <ulink url="motion-api.html">motion</ulink> of the kinematic chain:the chains starts in an initial position that is &ldquo;close&rdquo;to the desired one, and each iteration step of the numeric algorithmbrings the chain a bit closer to the desired position.

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
精品久久久久av影院| 亚洲一区二区av在线| 一本色道综合亚洲| 国产伦精一区二区三区| 久久精品av麻豆的观看方式| 日本色综合中文字幕| 亚洲午夜精品在线| 亚洲国产一区二区视频| 亚洲与欧洲av电影| 午夜日韩在线观看| 免费成人美女在线观看.| 青青草国产成人av片免费| 婷婷亚洲久悠悠色悠在线播放 | 欧美亚洲精品一区| 欧美视频精品在线观看| 9191成人精品久久| 亚洲精品一区二区三区影院| 久久毛片高清国产| 国产精品国产自产拍高清av| 亚洲免费观看高清完整版在线观看 | 国产欧美中文在线| 国产精品美女久久久久高潮| 自拍偷在线精品自拍偷无码专区| 亚洲男女一区二区三区| 舔着乳尖日韩一区| 国产一区二三区| 99久久综合狠狠综合久久| 在线视频综合导航| 精品国一区二区三区| 国产日韩欧美高清| 亚洲精品乱码久久久久久| 日韩理论片一区二区| 亚洲精品国产一区二区三区四区在线 | 精品系列免费在线观看| 成人性生交大片免费看视频在线 | 欧美剧情片在线观看| 日韩精品一区二区三区四区| 中文字幕精品一区二区精品绿巨人| 亚洲少妇30p| 六月丁香综合在线视频| 不卡的电视剧免费网站有什么| 欧美日精品一区视频| 久久精品亚洲乱码伦伦中文| 亚洲一区免费视频| 国产成人福利片| 欧美久久久久中文字幕| 国产精品超碰97尤物18| 国产综合久久久久影院| 色老综合老女人久久久| 国产欧美一区视频| 美腿丝袜亚洲综合| 在线视频欧美精品| 日本一区二区三区四区| 午夜影院在线观看欧美| 91女厕偷拍女厕偷拍高清| 久久久综合精品| 日本不卡视频一二三区| 欧美在线一二三| 亚洲欧美在线视频观看| 国产麻豆精品theporn| 91精品国产美女浴室洗澡无遮挡| 日韩毛片一二三区| 成人app在线| 国产无人区一区二区三区| 美腿丝袜一区二区三区| 6080午夜不卡| 亚洲成av人片在线观看| 欧美亚洲愉拍一区二区| 亚洲卡通欧美制服中文| 91美女福利视频| 国产欧美一区视频| 福利一区二区在线观看| 久久久亚洲午夜电影| 久久99久久99精品免视看婷婷| 777精品伊人久久久久大香线蕉| 国产精品久久久久国产精品日日| 久久精品免费看| 精品裸体舞一区二区三区| 免费成人在线视频观看| 欧美成人video| 精彩视频一区二区三区| 久久久亚洲精品一区二区三区 | 国产高清在线精品| 久久久久久免费毛片精品| 久久99热这里只有精品| 久久色成人在线| 精品午夜久久福利影院| 国产日韩欧美在线一区| 成人午夜电影久久影院| 中文字幕中文在线不卡住| av网站免费线看精品| 亚洲六月丁香色婷婷综合久久| 欧美视频在线一区| 日韩国产一区二| 久久先锋影音av鲁色资源网| 成人在线综合网站| 一区二区三区四区激情| 欧美一级精品在线| 国产成人超碰人人澡人人澡| 亚洲视频每日更新| 6080yy午夜一二三区久久| 韩国三级电影一区二区| 亚洲日穴在线视频| 日韩欧美一区中文| 国产不卡视频一区| 亚洲成人7777| 久久精品视频在线免费观看| 一本大道久久a久久综合| 日本91福利区| 日韩一区欧美一区| 欧美一级二级三级蜜桃| 成人一区二区视频| 天涯成人国产亚洲精品一区av| 久久在线观看免费| 色婷婷综合久久久久中文一区二区| 男女性色大片免费观看一区二区| 国产精品私房写真福利视频| 欧美日韩国产精品自在自线| 国产福利一区二区三区在线视频| 伊人开心综合网| 久久精品一区八戒影视| 欧美日韩国产综合视频在线观看| 国产一区高清在线| 午夜不卡av免费| 亚洲视频免费看| 国产亚洲成aⅴ人片在线观看| 欧美日韩中文另类| 99久久精品国产毛片| 国产一区三区三区| 日本中文在线一区| 夜夜夜精品看看| 国产精品久久久99| 久久久久久久久免费| 555www色欧美视频| 色猫猫国产区一区二在线视频| 国产高清精品网站| 久久精品99久久久| 日韩综合一区二区| 亚洲国产一区视频| 亚洲精品一二三| 国产精品福利影院| 日本一区二区电影| 国产欧美综合在线| 久久午夜羞羞影院免费观看| 欧美电视剧免费全集观看| 欧美另类z0zxhd电影| 色婷婷av一区二区三区大白胸| 成人app下载| 成人app网站| 不卡在线观看av| 丁香另类激情小说| 成人av在线一区二区三区| 国产成人自拍高清视频在线免费播放| 久久精品国产精品亚洲精品| 天天影视涩香欲综合网| 丝袜诱惑制服诱惑色一区在线观看 | 久久综合色天天久久综合图片| 欧美日本国产视频| 91精品国产高清一区二区三区蜜臀 | 亚洲精品乱码久久久久久| 亚洲精品视频一区| 一区二区三区波多野结衣在线观看| 国产精品久久777777| 中文字幕视频一区| 亚洲精品高清在线| 午夜激情综合网| 免费看欧美女人艹b| 精品一区二区综合| 床上的激情91.| 91色婷婷久久久久合中文| 欧美性色aⅴ视频一区日韩精品| 欧美视频在线不卡| 欧美一区二区三区不卡| 久久无码av三级| 国产精品久久久99| 国产精品嫩草久久久久| 亚洲激情六月丁香| 天天av天天翘天天综合网色鬼国产 | 日韩久久一区二区| 亚洲影院在线观看| 免费亚洲电影在线| 国产精品91一区二区| 91浏览器打开| 91精品国产91久久久久久最新毛片 | 日韩精品一区二区三区视频在线观看 | 色94色欧美sute亚洲13| 欧美少妇性性性| 亚洲精品一区二区三区香蕉| 亚洲欧美国产77777| 蜜臀精品一区二区三区在线观看 | 美国三级日本三级久久99| 国产一区二区影院| 色综合天天综合| 欧美va亚洲va| 一区二区三区四区亚洲| 国内精品国产三级国产a久久| 一本一道久久a久久精品综合蜜臀| 日韩午夜av电影| 亚洲欧洲综合另类| 国产在线精品免费|