亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? interpolation-api.sgml

?? 機器人開源項目orocos的源代碼
?? SGML
?? 第 1 頁 / 共 3 頁
字號:
<para>This 1D interpolator generates a motion from thecurrent state (position, velocity, acceleration) to a desiredvelocity, which must be reached with zero acceleration. The positionat that moment, as well as the duration of the motion, result from theinterpolation algorithm, and are not required as input parameters.</para><para>So, the interpolator's <emphasis role="strong">inputs</emphasis> are:desired end velocity; initial position; initial velocity; and initialacceleration.  The <emphasis role="strong">properties</emphasis> are:maximum velocity, maximum acceleration, and maximum jerk. The initial acceleration should not exceed the maximum acceleration.</para><para>In fact, the mathematics of this interpolator is very similar tothe <link linkend="trapezoidal-velocity">trapezoidal velocity</link>interpolator to reach a given <emphasis>position</emphasis>: justreplace position by velocity, velocity by acceleration, andacceleration by jerk. The interpolation in this Section has one extracomplexity: the initial conditions of velocity and acceleration arenot zero, while the <parameter>SingleSCurve</parameter> of<xref linkend="trapezoidal-velocity"> works with all zero initialconditions.</para><para><anchor id="trap-acc-phases">The interpolated motion profile has<emphasis role="strong">three different phases</emphasis>,corresponding to &ldquo;jerk pulses&rdquo;(<xref linkend="fig-trap-acc-to-velocity">):<orderedlist numeration="lowerroman"><listitem><para>Maximum jerk pulse, i.e., linearly growing acceleration until maximumacceleration.</para></listitem><listitem><para>Zero jerk, i.e., constant acceleration at maximum acceleration, or,equivalently, linearly growing velocity.</para></listitem><listitem><para>Maximum jerk pulse, i.e., linearly decreasing acceleration, until zeroacceleration.</para></listitem></orderedlist>The magnitude of the jerk pulse determines the slope of theacceleration profile. The maximum acceleration determines the width ofthe jerk pulse, as well as the (maximum) slope of the velocityprofile.<xref linkend="fig-trap-acc-to-velocity"> shows a typical motionprofile generated in this way.</para><para><figure id="fig-trap-acc-to-velocity" float="1" pgwide="0"><title>Trapezoidal acceleration interpolation to reach a given velocity.(The position is plotted at one-tenth of the scale.)</title><mediaobject><imageobject><imagedata fileref="../pictures/trapacc_vel.png" format="PNG"></imageobject><imageobject><imagedata fileref="../pictures/trapacc_vel.eps" format="EPS"></imageobject></mediaobject></figure></para><para>So, the mathematics are a simple extension of<xref linkend="fig-acceleration-integrations">, as shown in<xref linkend="fig-jerk-integrations-vel">.</para><para><figure id="fig-jerk-integrations-vel" float="1" pgwide="0"><title>Formulas for the integration of jerk pulses, with a magnitudeof j<subscript>m</subscript> and a sign &sigma;.</title><mediaobject><imageobject> <imagedata align="center"            fileref="../pictures/jerk-integrations-vel.png"            format="PNG"></imageobject><imageobject> <imagedata align="center"            fileref="../pictures/jerk-integrations-vel.eps"            format="EPS"></imageobject><textobject> <phrase><![CDATA[\begin{displaymath}\begin{aligned}j(t) = \phantom{\frac{1}{2}}&j_m\ \sigma      \left\{  I_0(t-t_0) - I_0(t-t_1) - I_0(t-t_2) + I_0(t-t_3)      \right\}\\\\a(t) = \phantom{\frac{1}{2}}&j_m\ \sigma      \left\{  I_1(t-t_0) - I_1(t-t_1) - I_1(t-t_2) + I_1(t-t_3)      \right\}\\  &+ a_0\\\\v(t) = \frac{1}{2} &j_m\ \sigma      \left\{  I_2(t-t_0) - I_2(t-t_1) - I_2(t-t_2) + I_2(t-t_3)      \right\}\\  &+ a_0 (t-t_0) + v_0\\\\p(t) = \frac{1}{6} &j_m\ \sigma      \left\{  I_3(t-t_0) - I_3(t-t_1) - I_3(t-t_2) + I_3(t-t_3)      \right\} \\ &+ \frac{1}{2} a_0 (t-t_0)^2 + v_0 (t-t_0) + p_0\\\\p_0 = p(t&=t_0), \quadv_0 = v(t=t_0), \quada_0 = a(t=t_0)\\\\I_y(x) &=  \begin{cases}  x^y, \quad x > 0 \\  0, \quad x \le 0  \end{cases}\end{aligned}\end{displaymath}]]> </phrase></textobject></mediaobject></figure></para><para><xref linkend="fig-trap-acc-to-velocity"> is produced with thefollowing (<ulink url="http://www.octave.org">Octave</ulink>) code,which is a direct implementation of the code in<xref linkend="fig-jerk-integrations-vel">:<programlisting><![CDATA[%% input arguments:startpos = -10;   startvel = -1;   startacc = 0.8;   endvel = 12;%% interpolator property values:maxvel = 3;       maxacc = 2;      maxjrk = 1;                                                                                %% find out whether we must accelerate or decelerate:tmp1 = startacc/maxjrk;deltavel = endvel - startvel;direction = sign ( deltavel + sign(startacc) * startacc * tmp1 /2);                                                                                %% magnitude of first jerk pulse:startjrk = direction * maxjrk;%% time of maximum deceleration phase:deltatime3 = maxacc / maxjrk;%% time of maximum acceleration phase:deltatime1 = deltatime3 - direction * tmp1;%% time of zero acceleration phase:deltatime2 = (direction * deltavel + tmp1 * startacc / 2) / maxacc - deltatime3;                                                                                if (deltatime2 < 0) %% maximum acceleration not reached  deltatime3 = sqrt( (direction * deltavel + tmp1 * startacc / 2)/maxjrk );  deltatime1 = deltatime3 - direction * tmp1;  deltatime2 = 0;endif%% time instant when maximum acceleration is reached:time1 = deltatime1;%% time instant when maximum acceleration phase ends:time2 = time1 + deltatime2;%% time instant when acceleration reaches zero, and end velocity is %reached:time3 = time2 + deltatime3;t = [0:0.01:time3+1]; %% we calculate one time instant longer than motion[nr,nc] = size(t);jrk = zeros(nr,nc); acc = zeros(nr,nc); vel = zeros(nr,nc); pos = zeros(nr,nc);                                                                                for i = 1:nc  time = t(i);  if (time < 0)    error("time instant must be positive");  elseif (time < time1)    jrk(i) = startjrk;    acc(i) = startjrk * time + startacc;    vel(i) = startjrk * time**2 / 2 + startacc * time + startvel;    pos(i) = startjrk * time**3 / 6 + startacc * time**2/2 + startvel * time + startpos;  elseif (time < time2)    jrk(i) = 0;    tt1 = time -time1;    acc(i) = startjrk * (time - tt1) + startacc;    vel(i) = startjrk * (time**2 - tt1**2)/ 2 + startacc * time + startvel;    pos(i) = startjrk * (time**3 - tt1**3) / 6 + startacc * time**2/2 + startvel * time + startpos;  elseif (time < time3)    tt1 = time -time1;    tt2 = time -time2;    jrk(i) = -startjrk;    acc(i) = startjrk * (time - tt1 - tt2) + startacc;    vel(i) = startjrk * (time**2 - tt1**2 - tt2**2)/ 2 + startacc * time + startvel;    pos(i) = startjrk * (time**3 - tt1**3 - tt2**3)/ 6 + startacc * time**2/2 + startvel * time + startpos;  else    tt1 = time -time1;    tt2 = time -time2;    tt3 = time -time3;    jrk(i) = 0;    acc(i) = 0;    vel(i) = endvel;    pos(i) =  startjrk * (time**3 - tt1**3 - tt2**3 + tt3**3)/ 6 + startacc * time**2/2 + startvel * time + startpos;  endifendfor]]></programlisting></para><para>For &ldquo;short&rdquo; motions, the interpolator might not reach theconstant acceleration phase, or, in other words, it doesn't reach themaximum velocity.</para></section><section id="trapezoidal-acceleration-to-position"><title> <parameter>TrapezoidalAccelerationToPosition</parameter>,  <parameter>DoubleSCurve</parameter></title><para>This interpolator is an extension of the<link linkend="trapezoidal-acceleration-to-velocity">TrapezoidalAccelerationToVelocity</link>interpolator.  It generates a motion from the current state (position,velocity, acceleration) to a desired <emphasis>position</emphasis>,which must be reached with zero velocity and acceleration.  Theduration of the motion results from the maximum velocity, accelerationand jerk constraints in the interpolation algorithm, and is notrequired as input parameter.</para><para>So, the <emphasis role="strong">inputs</emphasis> are:desired end position; initial position; initial velocity; and initialacceleration. The <emphasis role="strong">properties</emphasis> are:maximum velocity, maximum acceleration, and maximum jerk. The initialacceleration should not exceed the maximum acceleration.</para><para>Roughly speaking, a<parameter>TrapezoidalAccelerationToPosition</parameter> motionconsists of two<parameter>TrapezoidalAccelerationToVelocity</parameter> motions gluedtogether by a constant velocity motion(<xref linkend="fig-trap-acc-to-position">):<itemizedlist><listitem><para>Moving from the current velocity to the specified maximum velocity.This is the first &ldquo;trapezoid&rdquo; in the motion.</para></listitem><listitem><para>The time-reversal of the motion from zero velocity to the specifiedmaximum velocity. This is the second &ldquo;trapezoid&rdquo; in themotion.</para></listitem></itemizedlist>However, both trapezoids still have to be &ldquo;glued&rdquo;together; and that is not always straightforward.</para><para><figure id="fig-trap-acc-to-position" float="1" pgwide="0"><title>Acceleration and jerk profiles.</title><mediaobject><imageobject><imagedata fileref="../pictures/trapacc_pos.png" format="PNG"></imageobject><imageobject><imagedata fileref="../pictures/trapacc_pos.eps" format="EPS"></imageobject></mediaobject></figure></para><para>The motion profile has the same three initial phases as<link linkend="trapezoidal-acceleration-to-velocity">TrapezoidalAccelerationToVelocity</link>,resulting in a motion towards maximum velocity, at time instant t3.Then the motion has the following four phases, determined by jerkpulses:<orderedlist numeration="lowerroman" continuation="continues"><listitem><para>Zero jerk, i.e., zero acceleration, and constant (maximum)     velocity, between times t3 and t4.</para></listitem></orderedlist>Then, the last three phases are a time-reversed trapezoid of a<parameter>TrapezoidalAccelerationToVelocity</parameter> motion:<orderedlist numeration="lowerroman" continuation="continues"><listitem><para>Maximum jerk pulse, i.e., constantly changing acceleration, betweentimes t4 and t5.</para></listitem><listitem><para>Zero jerk, i.e., zero acceleration between times t5 and t6.</para></listitem><listitem><para>Maximum jerk pulse, i.e., constantly changing acceleration, betweentimes t6 and t7.</para></listitem></orderedlist>As said already, the last three phases are mirrors of the <link linkend="trap-acc-phases">first three phases</link>, except forthe fact that the t6-t7 phase moves until zero velocity andacceleration, while the t0-t1 phase starts from non-zero velocityand acceleration.</para><para>So, the resulting <emphasis>velocity</emphasis> profile looks like adouble, mirrored &ldquo;S&rdquo;, and the<emphasis>acceleration</emphasis> profile consists of two mirroredtrapezoids.</para><para>Mathematically speaking,the profile is the result of the integration of the jerk pulses,and the mathematics shown in<xref linkend="fig-jerk-integrations-pos"> are an extension of theformulas in <xref linkend="fig-acceleration-integrations"> and<xref linkend="fig-jerk-integrations-vel">.</para><para><figure id="fig-jerk-integrations-pos" float="1" pgwide="0"><title>Analytical expressions for the jerk, acceleration, velocity andposition curves.</title><mediaobject><imageobject><imagedata fileref="../pictures/jerk-integrations-pos.png" format="PNG"></imageobject><imageobject><imagedata fileref="../pictures/jerk-integrations-pos.eps" format="EPS"></imageobject></mediaobject></figure></para><para><figure id="fig-trapacc-pos-plot" float="1" pgwide="0"><title>Plots for the jerk, acceleration, velocity and position, for a nominalmotion.</title><mediaobject><imageobject><imagedata fileref="../pictures/trapacc_pos-plot.png" format="PNG"></imageobject><imageobject><imagedata fileref="../pictures/trapacc_pos-plot.eps" format="EPS"></imageobject></mediaobject></figure></para><para><xref linkend="fig-trapacc-pos-plot"> is produced with thefollowing (<ulink url="http://www.octave.org">Octave</ulink>) code:<programlisting><![CDATA[% initial position, velocity and acceleration:p0 = 30; v0 = -2; a0 = -1;% initial time:t0 = 0;% the profile has seven distinct phases, ending at time t7.% final position and velocity:p7 = 100;v7 = 0; % currently always zero!% (Absolute values of) maximum velocity, acceleration and jerk:vm = 7; am = 2; jm = 1;

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
奇米色777欧美一区二区| 久久这里只有精品视频网| 精品亚洲国内自在自线福利| 一区二区三区日韩在线观看| 自拍av一区二区三区| 日韩一区有码在线| 最新国产精品久久精品| 中文字幕中文字幕一区| 国产精品伦理一区二区| 综合精品久久久| 亚洲男人的天堂网| 亚洲一卡二卡三卡四卡五卡| 亚洲一区二区不卡免费| 午夜精品视频在线观看| 青青草精品视频| 国精产品一区一区三区mba视频| 激情都市一区二区| 国产成人免费高清| 国产麻豆成人传媒免费观看| 免费一级片91| 欧美日韩高清一区二区| 欧美三级在线播放| 欧美一区二区三区日韩视频| 欧美一级理论性理论a| 欧美mv日韩mv国产网站| 国产精品理论片在线观看| 一区二区免费视频| 国产综合色视频| 成人一区在线观看| 成a人片国产精品| 欧美三级日韩三级国产三级| 欧美成人video| 中文字幕亚洲一区二区av在线| 亚洲欧美日韩综合aⅴ视频| 一区二区三区产品免费精品久久75| 日韩精品一级中文字幕精品视频免费观看 | 中文字幕一区二区5566日韩| 欧美日韩国产a| 精品国精品国产| 亚洲狠狠丁香婷婷综合久久久| 亚洲成人黄色小说| 成人av在线看| 欧美福利一区二区| **欧美大码日韩| 久久精品国产**网站演员| 色视频欧美一区二区三区| 欧美成人女星排名| 亚洲尤物视频在线| 成人小视频免费在线观看| 在线电影院国产精品| 亚洲欧洲av另类| 国产乱码字幕精品高清av| 欧美偷拍一区二区| 久久国产剧场电影| 亚洲国产成人高清精品| 91麻豆swag| 亚洲欧美一区二区三区极速播放| 中文字幕在线观看不卡| 老司机精品视频线观看86| 欧美综合色免费| 国产精品久久一卡二卡| 国产一区二区三区| 91精品国产乱码久久蜜臀| 一区二区在线观看av| 成人免费视频视频在线观看免费| 欧美不卡一区二区三区| 日韩av一区二区在线影视| 欧美综合色免费| 一区二区三区在线视频观看 | 欧美性xxxxx极品少妇| 中文字幕日韩欧美一区二区三区| 激情久久五月天| 另类中文字幕网| 国产精品视频麻豆| 国产福利91精品一区| 亚洲精品在线三区| 免费成人av资源网| 欧美一卡二卡在线| 日韩精品亚洲专区| 欧美精品自拍偷拍| 天堂av在线一区| 欧美精品一级二级| 美女尤物国产一区| 久久奇米777| 国产成人精品免费一区二区| 国产欧美日韩视频一区二区| 国产白丝精品91爽爽久久| 国产精品少妇自拍| 色婷婷综合久久久久中文| 亚洲精品v日韩精品| 欧美三级韩国三级日本一级| 亚洲午夜久久久久久久久电影网 | 欧美午夜在线一二页| 欧美一区二区三区播放老司机| 99精品视频在线观看免费| 亚洲美女一区二区三区| 99麻豆久久久国产精品免费优播| 国产精品国产成人国产三级| 91亚洲国产成人精品一区二三| 亚洲欧美另类图片小说| 欧美日韩一区在线观看| 日韩成人av影视| 国产偷国产偷亚洲高清人白洁| 成人国产精品免费观看动漫| 亚洲精品videosex极品| 日韩午夜在线影院| 国产成人综合在线观看| 一区二区三区国产精华| 91麻豆精品国产| 成人免费看的视频| 亚洲高清免费观看| 国产日韩欧美精品电影三级在线| 91视视频在线观看入口直接观看www | 国产精品国产三级国产普通话蜜臀| av在线这里只有精品| 日韩高清在线一区| eeuss鲁片一区二区三区| 国产欧美日韩不卡免费| 91黄色激情网站| 韩国女主播成人在线| 蜜臀a∨国产成人精品| 中文字幕一区二区三区精华液| 91精品黄色片免费大全| 成人18精品视频| 精品一区二区精品| 亚洲国产日韩一区二区| 国产欧美日韩不卡| 欧美区视频在线观看| 不卡的电影网站| 狂野欧美性猛交blacked| 一区二区三区国产精华| 国产精品三级视频| 久久亚洲欧美国产精品乐播| 欧美日韩在线播放三区四区| 成人精品鲁一区一区二区| 欧美a一区二区| 亚洲国产wwwccc36天堂| 亚洲欧洲av在线| 国产三级久久久| 26uuu久久综合| 宅男在线国产精品| 欧美在线小视频| 色婷婷av一区| 色综合天天综合网国产成人综合天| 亚洲一区二区欧美日韩| 欧美精品一区二区三区在线播放| 欧洲av一区二区嗯嗯嗯啊| 成人app网站| 国产99久久久久久免费看农村| 久久99久久99精品免视看婷婷| 亚洲成人综合网站| 亚洲国产日产av| 亚洲愉拍自拍另类高清精品| 亚洲欧美日韩国产成人精品影院| 欧美韩日一区二区三区| 国产拍揄自揄精品视频麻豆| 国产亚洲午夜高清国产拍精品| 亚洲精品一区二区精华| 精品精品国产高清a毛片牛牛| 欧美成人激情免费网| 精品国产三级a在线观看| 日韩一二三四区| 久久综合成人精品亚洲另类欧美| 精品国产污污免费网站入口| 2014亚洲片线观看视频免费| 久久久天堂av| 国产精品网曝门| 亚洲日本电影在线| 亚洲国产精品久久不卡毛片| 亚洲h在线观看| 美女视频黄频大全不卡视频在线播放| 美女免费视频一区二区| 国产真实乱偷精品视频免| 国产99精品国产| 91蜜桃在线观看| 欧美久久久久久蜜桃| 日韩免费看的电影| 日本一区二区免费在线| 亚洲欧美日韩精品久久久久| 午夜在线电影亚洲一区| 日本在线观看不卡视频| 国产精品综合久久| 91丨porny丨首页| 久久综合av免费| 亚洲欧洲美洲综合色网| 亚洲 欧美综合在线网络| 国产自产2019最新不卡| 91免费在线看| 日韩欧美国产精品| 综合分类小说区另类春色亚洲小说欧美| 亚洲伊人色欲综合网| 韩国三级中文字幕hd久久精品| 成人午夜av在线| 在线91免费看| 成人欧美一区二区三区在线播放| 亚洲超碰97人人做人人爱| 国产1区2区3区精品美女| 欧美三级视频在线观看| 久久精品水蜜桃av综合天堂| 亚洲一区二区精品视频|